Matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP that promotes the tumorigenesis and aggressiveness, is highly expressed in gastric cancer. However, the transcriptional regulators of MMP-14 expression in gastric cancer still remain largely unknown. In this study, through mining computational algorithm programs and chromatin immunoprecipitation datasets, we identified adjacent binding sites of myeloid zinc finger 1 (MZF1) and miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that MZF1 directly bound to the MMP-14 promoter to facilitate its nascent transcription and expression in gastric cancer cell lines. In contrast, endogenous miR-337-3p suppressed the MMP-14 expression through recognizing its binding site within MMP-14 promoter. Mechanistically, miR-337-3p repressed the binding of MZF1 to MMP-14 promoter via recruiting Argonaute 2 and inducing repressive chromatin remodeling. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of gastric cancer cells in vitro and in vivo through repressing MZF1-facilitated MMP-14 expression. In clinical specimens and cell lines of gastric cancer, MZF1 was highly expressed and positively correlated with MMP-14 expression. Meanwhile, miR-337-3p was under-expressed and inversely correlated with MMP-14 levels. miR-337-3p was an independent prognostic factor for favorable outcome of gastric cancer, and patients with high MZF1 or MMP-14 expression had lower survival probability. Taken together, these data indicate that miR-337-3p directly binds to the MMP-14 promoter to repress MZF1-facilitatd MMP-14 expression, thus suppressing the progression of gastric cancer.
This paper introduces a semiconductor optical amplifier (SOA) with high power and narrow linewidth broadening achieved through active region mode control. By integrating mode control with broad-spectrum epitaxial material design, the device achieves high gain, high power, and wide band output. At a wavelength of 1550 nm and an ambient temperature of 20 °C, the output power reaches 757 mW when the input power is 25 mW, and the gain is 21.92 dB when the input power is 4 mW. The 3 dB gain bandwidth is 88 nm, and the linewidth expansion of the input laser after amplification through the SOA is only 1.031 times. The device strikes a balance between high gain and high power, offering a new amplifier option for long-range light detection and ranging (LiDAR).
The generation of tunable extreme-ultraviolet (EUV) vortex beams is highly sought after for optoelectronic applications in the EUV region. In this study, we investigate the generation of vortex high-order harmonics using a ring Pearcey–Gaussian vortex beam as the driving source. We analyze the beam’s spatial structure through phase-matching conditions and simulate high-order harmonic generation by solving the Maxwell wave equations. The beam’s self-focusing characteristics and low-diffraction properties after focusing significantly enhance harmonics near the 53rd order, indicating the generation of a narrowband EUV vortex. Our findings underscore the advantages of using a ring Pearcey–Gaussian vortex beam for narrowband EUV vortex generation, paving the way for creating tunable vortex high-order harmonics or attosecond pulses with innovative vortex beams.