Ticks are key vectors of some important diseases of humans and animals. Although they are carriers of disease agents, the viability and development of ticks are not harmed by the infectious agents due to their innate immunity. Antimicrobial peptides directly protect hosts against pathogenic agents such as viruses, bacteria, and parasites. Among the identified and characterized antimicrobial peptides, defensins have been considerably well studied. Defensins, which contain intramolecular disulfide bridges between cysteine residues, are commonly found among fungi, plants, invertebrates, and vertebrates. The sequence of the tick hemolymph defensin (HEdefensin) gene from the hard tick Haemaphysalis longicornis was analyzed after identification and cloning from a cDNA library. HEdefensin has a predicted molecular mass of 8.15 kDa and a theoretical isoelectric point of 9.48. Six cysteine residues were also identified in the amino acids. The synthetic HEdefensin peptide only showed antibacterial activity against Gram-positive bacteria such as Micrococcus luteus. A fluorescence propidium iodide exclusion assay also showed that HEdefensin increased the membrane permeability of M. luteus. Additionally, an indirect fluorescent antibody test showed that HEdefensin binds to M. luteus. These results suggested that HEdefensin strongly affects the innate immunity of ticks against Gram-positive bacteria.
RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks.
Three antimalarial drugs, artesunate, pyrimethamine, and pamaquine, were evaluated for their growth-inhibitory effects against Babesia equi and Babesia caballi in in vitro culture. B. equi was more resistant to pyrimethamine than B. caballi. B. equi was also found to be more sensitive to artesunate and pamaquine than B. caballi. Of the three compounds, pyrimethamine gave the most promise for in vivo effectiveness.
Two TaqMan-based real-time polymerase chain reaction (PCR) assays devised for the detection of two bovine Babesia parasites, Babesia bovis and B. bigemina, were evaluated for their diagnostic utility using cultured parasites and 92 field bovine blood samples collected from cattle living in Brazil. The real-time PCR assays were compared with previously established nested-PCR assays. The detection limits of both B. bovis- and B. bigemina-real-time PCR assays were identical at the value of 2.5 parasites/microL of the infected blood. When 92 field bovine blood samples were tested using the real-time assays, B. bovis-positive signals were observed in 30 samples among 31 B. bovis-positive blood samples in the nested-PCR assay (96.9% sensitivity and 100% specificity), whereas the B. bigemina-real-time PCR assay could detect the parasite from all of 45 B. bigemina-positive blood samples in the nested-PCR assay (100% sensitivity and specificity). The real-time assays using the TaqMan-system can therefore be practically implemented in the epidemiologic survey for bovine babesiosis. Further studies will be necessary to investigate the clinical value of this technique, especially for the quantitative detections of the parasites.