The macrophage immunometabolism regulator gene (MACIR) encodes a 206 amino acid protein lacking homology to any characterized protein sequence. MACIR expression is associated with severity of autoimmune disease pathology and regulates macrophage and fibroblast biology. To identify specific subcellular interactors of this protein with pull down and mass spectrometry we prepared whole cell proteins using a membrane solubilization buffer that enriched MACIR interacting proteins from cell organelles not seen with RIPA cell lysis buffer. A fragment complementation-based pull down approach identified 63 significant interactors including those with the nuclear import protein Transportin-1 (TNPO1) and UNC119 homologs A and B that were then validated by immunoprecipitation. Analysis of mutations in two candidate recognition motifs in the MACIR amino acid sequence confirmed TNPO1 binds via a C terminal PY motif (aa99-119). Understanding the mechanism controlling this interaction is a priority with respect to resolving inflammation in autoimmune disease.
It is now well established that the surface of nanoparticles (NPs) in a biological environment is immediately modified by the adsorption of biomolecules with the formation of a protein corona and it is also accepted that the protein corona, rather than the original nanoparticle surface, defines a new biological identity. Consequently, a methodology to effectively study the interaction between nanomaterials and the biological corona encountered within an organism is a key objective in nanoscience for understanding the impact of the nanoparticle-protein interactions on the biological response in vitro and in vivo. Here, we outline an integrated methodology to address the different aspects governing the formation and the function of the protein corona of polystyrene nanoparticles coated with Transferrin by different strategies. Protein-NP complexes are studied both in situ (in human plasma, full corona FC) and after washing (hard corona, HC) in terms of structural properties, composition and second-order interactions with protein microarrays. Human protein microarrays are used to effectively study NP-corona/proteins interactions addressing the growing demand to advance investigations of the extrinsic function of corona complexes. Our data highlight the importance of this methodology as an analysis to be used in advance of the application of engineered NPs in biological environments.
Spent fermentation media from bioprocessing represent a significant waste stream, and interest in recycling them as part of the developing circular bioeconomy is growing. The potential to reuse yeast spent culture media (YSM) to feed secondary bacterial fermentations producing recombinant protein was investigated in this study. Elemental and amino acid compositional analysis using inductively coupled plasma mass spectrometry (ICP-MS) and LC-MS/MS identified significant differences in the concentrations of 6 elements and 18/20 amino acids in YSM compared with rich microbiological media (LB). Restoration of levels of magnesium and sodium through addition of their salts and amino acids from tryptone supplementation led to the expression of equivalent titres of recombinant proteins by E. coli (0.275 g/L), compared to that in LB media (0.296 g/L) and BMMY media (0.294 g/L) in shake flask culture. When this supplementation strategy was employed in a bioreactor system, we observed a significant increase in recombinant protein titre using the supplemented YSM (2.29 (±0.02) g/L) over that produced using LB media (1.29 (±0.09) g/L). This study demonstrates through highly sensitive compositional analysis and identification of supplementation strategies the potential to valorise spent media from yeast fermentations that underpin industrial processes of significant scale, creating a circular approach to waste stream management.