Abstract Background The genetic basis of telomere length heterogeneity among mammalian species is still not well understood. Recently, a gene named regulator of telomere length elongation helicase ( RTEL ) was identified and predicted to be an essential participant in species-specific telomere length regulation in two murine species. To obtain broader insights into its structure and biological functions and to ascertain whether RTEL is also a candidate gene in the regulation of telomere length diversity in other mammalian species, data from other mammals may be helpful. Results Here we report the cDNA cloning, genomic structure, chromosomal location, alternative splicing pattern, expression distribution and DNA methylation profile of the bovine homolog of RTEL . The longest transcript of bovine RTEL is 4440 nt, encompassing 24.8 kb of genomic sequence that was mapped to chromosome 13q2.2. It encodes a conserved helicase-like protein containing seven characterized helicase motifs in the first 750 aa and a PIP box in the C-terminus. Four splice variants were identified within the transcripts in both the coding and 5'-untranslated regions; Western blot revealed that the most abundant splice variant SV-1 was translated to a truncated isoform of RTEL. The different 5'UTRs imply alternative transcription start sites in the promoter; Bovine RTEL was transcribed at the blastocyst stage, and expression levels were highest in adult testis, liver and ovary. DNA methylation analysis of tissues that differed significantly in expression level indicated that relatively low DNA methylation is associated with higher expression. Conclusion In this study, we have identified and characterized a bovine RTEL homolog and obtained basic information about it, including gene structure, expression distribution, splice variants and profile of DNA methylation around two putative transcription start sites. These data may be helpful for further comparative and functional analysis of RTEL in mammals.
Abstract Foot-and-mouth disease virus (FMDV) is one of the most important animal pathogens in the world. FMDV naturally infects swine, cattle, and other cloven-hoofed animals. FMD is not adequately controlled by vaccination. An alternative strategy is to develop swine that are genetically resistant to infection. Here, we generated FMDV-specific shRNA transgenic cells targeting either nonstructural protein 2B or polymerase 3D of FMDV. The shRNA-positive transgenic cells displayed significantly lower viral production than that of the control cells after infection with FMDV ( P < 0.05). Twenty-three transgenic cloned swine (TGCS) and nine non-transgenic cloned swine (Non-TGCS) were produced by somatic cell nuclear transfer (SCNT). In the FMDV challenge study, one TGCS was completely protected, no clinical signs, no viremia and no viral RNA in the tissues, no non-structural antibody response, another one TGCS swine recovered after showing clinical signs for two days, whereas all of the normal control swine (NS) and Non-TGCS developed typical clinical signs, viremia and viral RNA was determined in the tissues, the non-structural antibody was determined, and one Non-TGCS swine died. The viral RNA load in the blood and tissues of the TGCS was reduced in both challenge doses. These results indicated that the TGCS displayed resistance to the FMDV infection. Immune cells, including CD3 + , CD4 + , CD8 + , CD21 + , and CD172 + cells, and the production of IFN-γ were analyzed, there were no significant differences observed between the TGCS and NS or Non-TGCS, suggesting that the FMDV resistance may be mainly derived from the RNAi-based antiviral pathway. Our work provides a foundation for a breeding approach to preventing infectious disease in swine.
The aim of this study was to investigate the intergeneric transfer of vancomycin resistance gene vanA between probiotic enterococci in the fermentation progress of soybean meal and in the digestive tract of growing pigs. One vanA genotype vancomycin resistant E. faecium strain, Efm4, and one chloramphenicol-resistant E. faecalis strain, Efs2, were isolated from twenty-nine probiotic basis feed material / additive samples. For in vitro conjugation, Efm4 and Efs2 were used as starter to ferment soybean meal. For in vivo conjugation, thirty growing pigs were randomly assigned to five groups (n = 6), treated with a basic diet, or supplemented with 10% fermented soybean meal, 1% Efm4, 5% Efs2 or a combination of 1% Efm4 + 5% Efs2 for 7 d, respectively. Fecal samples of pigs in each group were collected daily for the isolation and dynamic analysis of Efm4, Efs2 and transconjugants. The sequence types (STs) of Efm4, Efs2 and transconjugants were analyzed by multilocus sequence typing (MLST). The vanA harboring plasmid in Efm4 and transconjugants was analyzed by S1-pulsed field gel electrophoresis (PFGE) and further verified by multiple alignments.The results showed that, in FSBM, transconjugants were detected 1 h after the fermentation, with a conjugation frequency of ~ 10- 3 transconjugants / recipient. Transconjugants proliferated with Efm4 and Efs2 in the first 8 h and maintained steadily for 10 d till the end of the experiment. Additionally, in vivo experiment showed that transcojugants were recovered in one of six pigs in both FSBM and Efm4 + Efs2 groups, with conjugation frequency of ~ 10- 5 and ~ 10- 4, respectively. MLST revealed the ST of Efm4, Efs2 and transconjugants was ST1014, ST69 and ST69, respectively. S1-PFGE confirmed the existence of the vanA-harboring, 142,988-bp plasmid, which was also a multi-drug resistant plasmid containing Tn1546-like transposon.The findings revealed the potential safety hazard existing in the commercial probiotic enterococci in China, because the horizontal transfer from farm to fork could potentially pose a safety risk to the public.
Abstract Recent studies have revealed that the gut microbiota participates in the psychiatric behavior changes in disorders associated with alcohol. But it still remains unknown whether alcoholism is involved in changes in gut microbiota and its underlying mechanism is also not clear. Here, we tested the gut microbiota of patients with alcoholism and conducted fecal microbiota transplantation (FMT) from patients with alcoholism to C57BL/6J mice whose gut microbiota had been sharply suppressed with antibiotics (ABX). Then we evaluated their alcohol preference degree, anxiety, and depression‐like behaviors and social interaction behaviors, together with molecular changes in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Our data indicated that the gut microbiota of patients with alcoholism was drastically different from those of the healthy adults. The abundance of p_Firmicutes was significantly increased whereas p_Bacteroidetes was decreased. Compared to mice transplanted with fecal microbiota from healthy male adults, the mice accepting fecal microbiota from patients with alcoholism showed (a) anxiety‐like and depression‐like behaviors, (b) decreased social interaction behaviors, (c) spontaneous alcohol preference, and (d) decreased brain‐derived neurotrophic factor (BDNF), alpha 1 subunit of GABA type A receptor (α1GABA A R) in mPFC and decreased metabotropic glutamate receptors 1 (mGluR1), protein kinase C (PKC) ε in NAc. Overall, our results suggest that fecal microbiota from patients with alcoholism did induce a status like alcohol dependence in C57BL/6J mice. The decreased expression of BDNF, α1GABA A R, and mGluR1/ PKC ε may be the underlying mechanism.
Breast cancer (BC) is the most common cancer among women worldwide, with enormous heterogeneity. Pyroptosis has a significant impact on the development and progression of tumors. Nonetheless, the possible correlation between pyroptosis-related genes (PRGs) and the BC immune microenvironment has yet to be investigated.In The Cancer Genome Atlas Breast Cancer cohort, 38 PRGs were shown to be significantly different between malignant and non-malignant breast tissues. The 38 PRGs' consensus clustering grouped 1,089 individuals into two pyroptosis-related (PR) patterns. Using univariate and LASSO-Cox analyses, a PR five-gene predictive signature was constructed based on the differentially expressed genes between two clusters. The tools estimation of stromal and immune cells in malignant tumours using expression data (ESTIMATE), cell type identification by estimating relative subsets Of RNA transcripts (CIBERSORT), and single-sample gene set enrichment analysis (ssGSEA) were used to investigate the BC tumor microenvironment (TME).In TME, the two PR clusters displayed distinct clinicopathological characteristics, survival outcomes, and immunocyte infiltration features. The developed five-signature model (SEMA3B, IGKC, KLRB1, BIRC3, and PSME2) classified BC patients into two risk groups based on the estimated median risk score. Patients in the low-scoring category had a higher chance of survival and more extensive immunocyte infiltration. An external validation set can yield similar results.Our data suggest that PRGs have a significant impact on the BC immunological microenvironment. The PR clusters and associated predictive signature stimulate additional research into pyroptosis in order to optimize therapeutic strategies for BC patients and their responses to immune therapy.
Human noroviruses (huNoVs) cause epidemic acute gastroenteritis with significant mortality and morbidity worldwide. However, there are no commercial vaccines or antivirals against these important pathogens so far. In this study, we found that bovine colostrum (bCM) inhibited huNoV VLPs and their capsid-protruding (P) domains binding to histo-blood group antigens (HBGAs) that are huNoV receptor or attachment factors for infection, suggesting that bCM may function as a natural antiviral against huNoVs. We then characterized the bCM for the functional inhibition components by sequentially separating bCM into multiple fractions through various chromatography approaches, followed by determining their inhibitory abilities against huNoV receptor-binding P protein interacting with HBGAs. The protein components of bCM functional fractions were examined by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Our data suggested that some milk proteins, likely in the form of glycoproteins, contribute to the observed blocking effects of bCM. Our findings lay an important foundation to further develop bCM into a potential natural antiviral against huNoVs.