Conventional nested PCR and Sanger sequencing methods are currently the gold standards for detecting trypanosomes in wildlife. However, these techniques are time-consuming and can often overlook mixed infections. True trypanosome prevalence can thus be underrepresented. Here, we designed an 18S rDNA-based real-time quantitative PCR (qPCR) assay coupled with High-Resolution Melting Analysis (HRMA) to detect and discriminate three Trypanosoma species (T. copemani, T. noyesi, and T. vegrandis) commonly infecting Australian marsupials. A total of 68 genetically characterised samples from blood and tissue were used to validate the High-Resolution Melting - Real Time Quantitative Polymerase Chain Reaction (HRM-qPCR) assay. A further 87 marsupial samples consisting of blood, tissue and in vitro cultures derived from wildlife blood samples, were screened for the first time using this assay, and species identity confirmed using conventional PCR and Sanger sequencing. All three Trypanosoma species were successfully detected in pure cultures using the HRM-qPCR assay, and in samples containing mixed trypanosome infections. Of the 87 marsupial samples screened using the HRM-qPCR assay, 93.1% were positive for trypanosomes, and 8.0% contained more than one trypanosome species. In addition to the three targeted Trypanosoma species, this assay was also able to detect and identify other native and exotic trypanosomes. The turnaround time for this assay, from sample preparation to obtaining results, was less than 2 h, with a detection limit of 10 copies of the amplicon in a reaction for each of the targeted trypanosome species. This more rapid and sensitive diagnostic tool provides a high throughput platform for the detection, identification and quantification of trypanosome infections. It will also improve understanding of host diversity and parasite relationships and facilitate conservation management decisions.
ABSTRACT PCR technology offers alternatives to conventional diagnosis of Cryptosporidium for both clinical and environmental samples. We compared microscopic examination by a conventional acid-fast staining procedure with a recently developed PCR test that can not only detect Cryptosporidium but is also able to differentiate between what appear to be host-adapted genotypes of the parasite. Examinations were performed on 511 stool specimens referred for screening on the basis of diarrhea. PCR detected a total of 36 positives out of the 511 samples, while routine microscopy detected 29 positives. Additional positives detected by PCR were eventually confirmed to be positive by microscopy. A total of five samples that were positive by routine microscopy at Western Diagnostic Pathology but negative by PCR and by microscopy in our laboratory were treated as false positives. Microscopy therefore exhibited 83.7% sensitivity and 98.9% specificity compared to PCR. PCR was more sensitive and easier to interpret but required more hands-on time to perform and was more expensive than microscopy. PCR, however, was very adaptable to batch analysis, reducing the costs considerably. Bulk buying of reagents and modifications to the procedure would decrease the cost of the PCR test even more. An important advantage of the PCR test, its ability to directly differentiate between different Cryptosporidium genotypes, will assist in determining the source of cryptosporidial outbreaks. Sensitivity, specificity, ability to genotype, ease of use, and adaptability to batch testing make PCR a useful tool for future diagnosis and studies on the molecular epidemiology of Cryptosporidium infections.
Understanding how fauna translocation and antiparasitic drug treatment impact parasite community structure within a host is vital for optimising translocation outcomes. Trypanosoma spp. and piroplasms (Babesia and Theileria spp.) are known to infect Australian marsupials, including the woylie (Bettongia penicillata). However relatively little is known about these haemoparasites, or how they respond to management practices such as translocation. We monitored haemoparasites infecting woylies for up to 12 months during two fauna translocations to supplement existing woylie populations in three different sites (Dryandra, Walcott and Warrup East) within south-western Australia between 2014 and 2016, with the aim of investigating (i) how haemoparasite prevalence, Trypanosoma spp. richness and Trypanosoma spp. community composition varied over time and between different sites following translocation; and (ii) whether ivermectin treatment indirectly impacts haemoparasite prevalence. Using molecular methods, 1211 blood samples were screened for the presence of trypanosomes, and a subset of these samples (n = 264) were also tested for piroplasms.Trypanosomes and piroplasms were identified in 55% and 94% of blood samples, respectively. We identified five Trypanosoma species, two Theileria species, a single species of Babesia and a novel Bodo species. Trypanosoma spp. richness and the prevalence of haemoparasite co-infection increased after translocation. Prior to translocation, Trypanosoma spp. community composition differed significantly between translocated and resident woylies within Walcott and Warrup East, but not Dryandra. Six months later, there was a significant difference between translocated and resident woylies within Dryandra, but not Walcott or Warrup East. The response of haemoparasites to translocation was highly site-specific, with predominant changes to the haemoparasite community in translocated woylies occurring within the first few months following translocation. Ivermectin treatment had no significant effect on haemoparasite prevalence.This study contributes to our understanding of haemoparasite dynamics in woylies following translocation. The highly site-specific and rapid response of haemoparasites to translocation highlights the need to better understand what drives these effects. Given that haemoparasite prevalence and composition of translocated and resident animals changed significantly following translocation, we propose that parasite monitoring should form an essential component of translocation protocols, and such protocols should endeavour to monitor translocated hosts and cohabiting species.
Giardia is now considered the most common enteric parasite in well cared for dogs and cats in developed countries. The ecology, epidemiology and clinical impact of infections with this parasite in such animals is still not fully understood due to variable results across different studies. Faecal samples were collected between 2009 and 2012 from privately owned cats and dogs in Germany presented to local veterinarians for a variety of reasons. Giardia positive samples were identified by microscopy and coproantigen methods. Total faecal DNA was extracted from Giardia positive samples and multilocus genotyping methods (18S rDNA, β-giardin, GDH) were applied. Relationships between host age, sex, and breed, season of presentation and the different species of Giardia detected were assessed. A total of 60 cat and 130 dog samples were identified as Giardia positive. Potentially zoonotic Giardia was identified in both animal species. Cats had a similarly high rate of infection with the G. duodenalis and G. cati. Cats less than 1 year were more likely to have G. duodenalis than cats older than 1 year. Pure breed cats demonstrated a greater proportion of zoonotic species than mixed breed cats. In samples from dogs, G. canis (C and D genotypes) were identified most commonly. Male dogs were more likely to have G. canis (genotype D) than female dogs. The 18S rDNA PCR protocol was the most successful followed by the β-giardin and GDH (amplifying from 92%, 42% and 13% of samples respectively). The potentially zoonotic species G. duodenalis and G. enterica were found in cat and dog samples, with G. duodenalis found in greater numbers; however, this may be due to the detection techniques utilised. Cats appeared to show a relationship between G. duodenalis and G. cati with age and breed, which may be explained by different housing habitats for pure and mixed breed cats. The different success rates for the three loci utilised highlights the usefulness of the 18S locus as a screening tool, as well as the importance of using multiple loci for genotyping to fully determine the level of multiple infection of Giardia present.
To the Editor: Human diphyllobothriosis associated with the Pacific broad tapeworm Adenocephalus pacificus (syn. Diphyllobothrium pacificum) is a reemerging, global parasitic disease (1). Infection with the adult tapeworm occurs widely in piscivorous mammals, including humans, with various species of marine fish acting as intermediate hosts (1,2). In the Southern Hemisphere, the organism is well described in the coastal waters of South America, southern Africa, and Oceania (2). A. pacificus tapeworms have been recorded in pinnipeds in Australian territory as far back as 1923 (3). To our knowledge, no human case has been reported from this region to date.
We conducted a community cross-sectional survey of soil-transmitted helminthiasis in humans and dogs in four provinces in northern Laos. We collected and tested human and dog fecal samples and analyzed results against sociodemographic data. The prevalence of Ascaris lumbricoides , Trichuris trichiura , hookworm, and Strongyloides stercoralis was 26.1% (95% confidence interval [CI] = 23.7–28.4%), 41.5% (95% CI = 38.8–44.1%), 46.3% (95% CI = 43.3–49.0%), and 8.9% (95% CI = 7.4–10.4%), respectively. We observed strong heterogeneity for helminthiasis by ethnicity, province, and wealth status, which coincided with a risk profile demonstrating that Mon-Khmer persons and the poorest households are highly vulnerable. Necator americanus was the dominant hookworm species infecting humans and Ancylostoma ceylanicum was the only Ancylostoma species detected. Hookworm prevalence in village dogs was 94%, and the dominant species was A. ceylanicum . Necator americanus was also detected in dogs. It appears that dogs have a role in human hookworm transmission and warrant further investigation.