Die Feinabstimmung zwischen den lateralen intermolekularen Wechselwirkungen und der Molekül-Substrat-Bindung ermöglicht die Selbstorganisation supramolekularer Nanostrukturen an Oberflächen. Die rastertunnelmikroskopische Aufnahme zeigt die Bildung einer Doppelkette aus 4-[trans-2-(Pyrid-4-yl)vinyl]benzoesäure-Molekülen, die auf einer Ag(111)-Oberfläche im Ultrahochvakuum adsorbiert wurden.
Unabhängig sind die Symmetrien des sich bildenden Netzwerks und der Metalloberfläche, auf der das Netzwerk entsteht, bei der oberflächengestützten Assoziation von Liganden und Metallzentren zu metall-organischen 2D-Koordinationsnetzwerken in Honigwabenform mit dreizähligen Koordinationsmotiven (siehe Bild). Diese bei metall-organischen 3D-Gerüsten seltene Koordinationsform wird durch die strikte Beschränkung auf eine 2D-Umgebung erleichtert.
Abstract Saccharides are ubiquitous biomolecules, but little is known about their interaction with, and assembly at, surfaces. By combining preparative mass spectrometry with scanning tunneling microscopy, we have been able to address the conformation and self‐assembly of the disaccharide sucrose on a Cu(100) surface with subunit‐level imaging. By employing a multistage modeling approach in combination with the experimental data, we can rationalize the conformation on the surface as well as the interactions between the sucrose molecules, thereby yielding models of the observed self‐assembled patterns on the surface.
We present investigations on noncovalent bonding and supramolecular self-assembly of two related molecular building blocks at a noble metal surface: 4-[trans-2-(pyrid-4-yl-vinyl)]benzoic acid (PVBA) and 4-[(pyrid-4-yl-ethynyl)]benzoic acid (PEBA). These rigid, rodlike molecules comprising the same complementary moieties for hydrogen bond formation are comparable in shape and size. For PVBA, the ethenylene moiety accounts for two-dimensional (2-D) chirality upon confinement to a surface; PEBA is linear and thus 2-D achiral. Molecular films were deposited on a Ag(111) surface by organic molecular beam epitaxy and characterized by scanning tunneling microscopy. At low temperatures (around 150 K), both species form irregular networks of flat lying molecules linked via their endgroups in a diffusion-limited aggregation process. In the absence of kinetic limitations (adsorption or annealing at room temperature), hydrogen-bonded supramolecular assemblies form which are markedly different. With PVBA, enantiomorphic twin chains in two mirror-symmetric species running along a high-symmetry direction of the substrate lattice form by diastereoselective self-assembly of one enantiomer. The chirality signature is strictly correlated between neighboring twin chains. Enantiopure one-dimensional (1-D) supramolecular nanogratings with tunable periodicity evolve at intermediate coverages, reflecting chiral resolution in micrometer domains. In contrast, PEBA assembles in 2-D hydrogen-bonded islands, which are enantiomorphic because of the orientation of the supramolecular arrangements along low-symmetry directions of the substrate. Thus, for PVBA, chiral molecules form 1-D enantiomorphic supramolecular structures because of mesoscopic resolution of a 2-D chiral species, whereas with PEBA, the packing of an achiral species causes 2-D enantiomorphic arrangements. Model simulations of supramolecular ordering provide a deeper understanding of the stability of these systems.
Abstract Many 2D covalent polymers synthesized as single layers on surfaces show inherent disorder, expressed for example in their ring‐size distribution. Systems which are expected to form the thermodynamically favored hexagonal lattice usually deviate from crystallinity and include high numbers of pentagons, heptagons, and rings of other sizes. The amorphous structure of two different covalent polymers in real space using scanning tunneling microscopy is investigated. Molecular dynamics simulations are employed to extract additional information. We show that short‐range correlations exist in the structure of one polymer, i. e. that polygons are not tessellating the surface randomly but that ring neighborhoods have preferential compositions. The correlation is dictated by the energy of formation of the ring neighborhoods.
Co single atom junctions on copper surfaces are studied by scanning tunneling microscopy and ab initio calculations. The Kondo temperature of single cobalt atoms on the Cu(111) surface has been measured at various tip-sample distances ranging from tunneling to the point contact regime. The experiments show a constant Kondo temperature for a whole range of tip-substrate distances consistently with the predicted energy position of the spin-polarized $d$ levels of Co. This is in striking difference to experiments on $\mathrm{Co}/\mathrm{Cu}(100)$ junctions, where a substantial increase of the Kondo temperature has been found. Our calculations reveal that the different behavior of the Co adatoms on the two Cu surfaces originates from the interplay between the structural relaxations and the electronic properties in the near-contact regime.
Die Deprotonierung der Carboxygruppen von 1,3,5-Benzoltricarbonsäure-Molekülen auf Ag(111)-Oberflächen verläuft bereitwillig in Gegenwart eines verdünnten Cu-Adatom-Gases auf der Oberfläche, während die Reaktion unter ähnlichen Bedingungen, aber mit Cu in Form kondensierter monolagiger Inseln praktisch nicht stattfindet. Die Ergebnisse zeigen, dass hoch mobile Adatome Materialien eine dynamische Heterogenität verleihen können. Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2001/2005/z461390_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.