It is currently unclear whether small molecules dissociate from a protein binding site along a defined pathway or through a collection of dissociation pathways. We report herein a joint crystallographic, computational, and biophysical study that suggests the Asp-128 → Ala (D128A) streptavidin mutant closely mimics an intermediate on a well-defined dissociation pathway. Asp-128 is hydrogen bonded to a ureido nitrogen of biotin and also networks with the important aromatic binding contacts Trp-92 and Trp-108. The Asn-23 hydrogen bond to the ureido oxygen of biotin is lengthened to 3.8 Å in the D128A structure, and a water molecule has moved into the pocket to replace the missing carboxylate interaction. These alterations are accompanied by the coupled movement of biotin, the flexible binding loop containing Ser-45, and the loop containing the Ser-27 hydrogen bonding contact. This structure closely parallels a key intermediate observed in a potential of mean force-simulated dissociation pathway of native streptavidin, where the Asn-23 hydrogen bond breaks first, accompanied by the replacement of the Asp-128 hydrogen bond by an entering water molecule. Furthermore, both biotin and the flexible loop move in a concerted conformational change that closely approximates the D128A structural changes. The activation and thermodynamic parameters for the D128A mutant were measured and are consistent with an intermediate that has traversed the early portion of the dissociation reaction coordinate through endothermic bond breaking and concomitant gain in configurational entropy. These composite results suggest that the D128A mutant provides a structural “snapshot” of an early intermediate on a relatively well-defined dissociation pathway for biotin.
Abstract The liquid crystalline phases of several rigid-rod, non-polar tolane oligomers are characterized by differential scanning calorimetry and transmitted polarized light microscopy. We determine that a stable nematic phase can be formed at ambient pressure if the molecular axial ratio (length-to-width ratio) is greater than 4.5. A smectic phase forms in addition to the nematic phase if the axial ratio exceeds 6.1. Symmetrical fluorination of the terminal phenyl groups reveals that the liquid crystalline phase behaviour of these rigid rods is highly sensitive to perturbations of the charge distribution along the molecules. Nematic tolane oligomers can exhibit high stregth disclinations (s = ±3/2 and ±2) in their schlieren textures, and we discuss conditions that promote the stability of these defects.
The high-affinity streptavidin-biotin complex is characterized by an extensive hydrogen-bonding network. A study of hydrogen-bonding energetics at the ureido oxygen of biotin has been conducted with site-directed mutations at Asn 23, Ser 27, and Tyr 43. A new competitive biotin binding assay was developed to provide direct equilibrium measurements of the alterations in Kd. S27A, Y43F, Y43A, N23A, and N23E mutants display DeltaDeltaG degrees at 37 degrees C relative to wild-type streptavidin of 2.9, 1.2, 2.6, 3.5, and 2.6 kcal/mol, respectively. The equilibrium-binding enthalpies for all of the mutants were measured by isothermal titration calorimetry, and the Y43A and N23A mutants display large decreases in the equilibrium binding enthalpy at 25 degrees C of 8.9 and 6.9 kcal/mol, respectively. The S27A and N23E mutants displayed small decreases in binding enthalpy of 1.6 and 0.9 kcal/mol relative to wild-type, while the Y43F mutant displayed a -2.6 kcal/mol increase in the binding enthalpy at 25 degrees C. At 37 degrees C, the Y43A and N23A mutants display decreases of 7.8 and 7.9 kcal/mol, respectively, while the S27A, N23E, and Y43F mutants displayed decreases of 4.9, 3.7, and 1.2 kcal/mol relative to wild-type. Kinetic analyses were also conducted to probe the contributions of the hydrogen bonds to the activation barrier. Wild-type streptavidin at 37 degrees C displays a koff of (4.1 +/- 0.3) x 10(-5) s-1, and the conservative Y43F, S27A, and N23A mutants displayed increases in koff to (20 +/- 1) x 10(-5) s-1, (660 +/- 40) x 10(-5) s-1, and (1030 +/- 220) x 10(-)5 s-1, respectively. The Y43A and N23E mutants displayed 93-fold and 188-fold increases in koff, respectively. Activation energies and enthalpies for each of the mutants were determined by transition-state analysis of the dissociation rate temperature dependence. All of the mutants except Y43F display large reductions in the activation enthalpy. The Y43F mutant has a more positive activation enthalpy, and thus a more favorable activation entropy that underlies the overall reduction in the activation barrier. For the most conservative mutant at each ureido oxygen hydrogen-bonding position, bound-state alterations account for most of the energetic changes in a single transition-state model, suggesting that the ureido oxygen hydrogen-bonding interactions are broken in the dissociation transition state.
Abstract A circularly permuted streptavidin (CP51/46) has been designed to remove the flexible polypeptide loop that undergoes an open to closed conformational change when biotin is bound. The original termini have been joined by a tetrapeptide linker, and four loop residues have been removed, resulting in the creation of new N‐ and C‐termini. Isothermal titration calorimetric studies show that the association constant has been reduced approximately six orders of magnitude below that of wild‐type streptavidin to 10 7 M −1 . The δ H ° of biotin association for CP51/46 is reduced by 11.1 kcal/mol. Crystal structures of CP51/46 and its biotin complex show no significant alterations in the binding site upon removal of the loop. A hydrogen bond between Ser45 and Ser52 found in the absence of biotin is broken in the closed conformation as the side‐chain hydroxyl of Ser45 moves to hydrogen bond to a ureido nitrogen of biotin. This is true in both the wild‐type and CP51/46 forms of the protein, and the hydrogen bonding interaction might thus help nucleate closure of the loop. The reduced entropic cost of binding biotin to CP51/46 is consistent with the removal of this loop and a reduction in entropic costs associated with loop closure and immobilization. The reduced enthalpic contribution to the free energy of binding is not readily explainable in terms of the molecular structure, as the binding contacts are nearly entirely conserved, and only small differences in solvent accessible surfaces are observed relative to wild‐type streptavidin.
Circular permutation of streptavidin was carried out in order to investigate the role of a main-chain amide in stabilizing the high-affinity complex of the protein and biotin. Mutant proteins CP49/48 and CP50/49 were constructed to place new N-termini at residues 49 and 50 in a flexible loop involved in stabilizing the biotin complex. Crystal structures of the two mutants show that half of each loop closes over the binding site, as observed in wild-type streptavidin, while the other half adopts the open conformation found in the unliganded state. The structures are consistent with kinetic and thermodynamic data and indicate that the loop plays a role in enthalpic stabilization of the bound state via the Asn49 amide-biotin hydrogen bond. In wild-type streptavidin, the entropic penalties of immobilizing a flexible portion of the protein to enhance binding are kept to a manageable level by using a contiguous loop of medium length (six residues) which is already constrained by its anchorage to strands of the β-barrel protein. A molecular-dynamics simulation for CP50/49 shows that cleavage of the binding loop results in increased structural fluctuations for Ser45 and that these fluctuations destabilize the streptavidin-biotin complex.