Abstract Atmospheric particle adsorption on insulator surfaces, coupled with humid environments, significantly affects contamination flashover, necessitating a clear understanding of the electric field distribution on insulator surfaces with adsorbed particles. This is crucial for accurately assessing insulator safety and informing critical decision -making. Although previous research has demonstrated that particle arrangement significantly influences the electric field distribution around transmission lines, an in-depth analysis of its effects on insulator surfaces remains lacking. To address this gap, this study establishes a composite insulator model to examine how three types of spherical contamination layers affect the electric field distribution on insulator surfaces under varying environmental conditions. The results reveal that in dry environments, the electric field strength at the apex of single-particle contamination layers increases with the particle size and relative permittivity. For the double-particle contamination layers, the electric field intensity on the insulator surface decreases as the particle spacing increases, and larger particles are more likely to attract smaller charged particles. For triple-particle contamination layers arranged in a triangular pattern, the maximum surface field strength is nearly double that of the chain-arranged particles. Furthermore, within the chain-arranged triple-particle contamination layers, a large-small-large size arrangement has a more pronounced impact on the surface electric field than a small-large-small size arrangement. In humid environments, the surface electric field strength of insulators decreases with increasing contamination levels. These findings are of significant theoretical and practical importance for ensuring the safe operation of power systems.
Abstract High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 kV/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore, when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately 74.73 times and 19.43 times stronger than the gravitational force acting on the particles.