Understanding the temporal effects of thinning on the composition and growth of regene-rated broadleaved woody species in coniferous plantations can provide profound references for promoting the conversion of monoculture plantations into mixed conifer-broadleaved forests, which could solve the problem that the production and ecological functions of monoculture plantations cannot be balanced. We compared the composition of regenerated woody plant species in Larix kaempferi plantation with short-term (1-3 years), medium-term (4-9 years) and long-term (>9 years) after thinning. Furthermore, we selected three regenerated tree species with higher importance value and reciprocal symbiosis with L. kaempferi, which differed in shade tolerance, including shade-intolerant species Quercus mongolica, intermediate shade-tolerant species Acer mono, and shade-tolerant species Tilia mandschurica. We analyzed the relationships between light conditions (i.e., canopy density) and the growth (i.e., base diameter and height) of those species in L. kaempferi plantation with different terms after thinning. The results showed that 46 species of regene-rated broadleaved woody plants were recorded in thinned plantations. The common and dominant tree in different terms after thinning was A. mono, and the shrub species were Lonicera japonica and Euonymus alatus. With the increasing time after thinning, species richness of regenerated trees decreased, but the ratio of tree to shrub species increased and the intermediate shade-tolerant tree species took the dominant position. The temporal effect of thinning on the growth of three tree species was affected by shade tolerance ability. Basal diameter and height of T. mandschurica were higher than those of Q. mongolica and A. mono. With the increases of time after thinning, basal diameter of T. mandschurica and height of A. mono were more sensitive to light, indicating that there were respectively a shade tolerance strategy and a shade avoidance strategy to adapt to the post-thinning environment. The effects of thinning on the composition and growth of regenerated broadleaved woody species in L. kaempferi plantations were significantly time-sensitive. When deve-loping thinning measures to promote the regeneration of broadleaved trees in plantations, we should consider to extend the thinning interval appropriately to ensure the growth of broadleaved tree seedlings (e.g., T. mandschurica and A. mono) and accelerate their migration into the canopy layer. This would promote the formation of mixed conifer-broadleaved forests and eventually realize the sustainable development of plantations.
Additional file 1: Supplemental Data Sets. The raw data of tea-leaves quality components, soil environmental factors and microbial community composition in modern and ancient tea plantations of five sampling sites including Bingdao, Baqishan, Banuo, Dongguo and Jiulong, respectively. (XLS 1972 kb)
Abstract Background Ancient tea plantations with an age over 100 years still reserved at Mengku Town in Lincang Region of Yunan Province, China. However, the characteristic of soil chemicophysical properties and microbial ecosystem in the ancient tea plantations and their impact on tea-leaves chemical components remained unclear. Tea-leaves chemical components including amino acids, phenolic compounds and purine alkaloids, and soil chemicophysical properties including pH, cation exchange capacity (CEC), soil organic matter (SOM), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorous (AP) and available potassium (AK), and microbial community structure of modern and ancient tea plantations in five geographic sites (i.e. Bingdao, Baqishan, Banuo, Dongguo and Jiulong) were determined by high performance liquid chromatography (HPLC) and high-throughput sequencing, respectively. Results Tea-leaves chemical components, soil chemicophysical properties and microbial community structures including bacterial and fungal community abundance and diversity evaluated by Chao 1 and Shannon varied with geographic location and tea plantation type. The ancient tea plantations possessed significantly ( P <0.05) higher free amino acids, gallic acid, caffeine and epigallocatechin (EGC) in tea-leaves, as well as soil fertility. The bacterial community structure kept stable, while fungal community abundance and diversity significantly ( P <0.05) increased in ancient tea plantation because of higher soil fertility and lower pH. The long-term plantation in natural cultivation way significantly ( P <0.05) improved the abundances of Nitrospirota, Methylomirabilota, Ascomycota and Mortierellomycota phyla. Conclusions Due to the natural cultivation way, the ancient tea plantations still maintained relatively higher soil fertility and complete soil microbial ecosystem, which contributed to the sustainable development with higher quality in tea-leaves.
Abstract Background Promoting natural regeneration (including seed and sprout regeneration) of dominant woody species is essential for restoring secondary forests. However, such restoration processes have been decelerated by the enclosure under Natural Forest Protection Project of China (NFPP). It remains unclear how to implement appropriate management measures (e.g., whether to apply logging and the suitable intensity) to facilitate natural regeneration according to the responses of two regeneration modes to management measures. We monitored the early stages of seed regeneration (seed rain, soil seed bank, and 1–3-year-old seedlings) and sprout regeneration (stump sprout rate, stump survival rate, probability of sprouting, and number of sprouts per stump) over the first 3 years (2017–2019) after logging under three intensity regimes (control [0%], 25%, and 50% logging intensity) in secondary forests. Results The seed rain density decreased markedly, seedling density increased insignificantly after logging, and logging promoted seedling survival at an increasing conversion rate of 3-year-old seedlings (37.5% under 0%, 100% under 25%, and 80.95% under 50% logging) compared to those of the control. The proportion of 3-year-old seedlings increased with logging intensity and was the highest (16.2%) at 50% logging intensity. Sprout density was not affected by logging intensity, however, under 25% and 50% logging, it decreased by 27% and 6% in 2018, and by 37% and 33% in 2019, respectively. Seedling density was 41.65- and 15.31-fold higher than that of sprouts in the 50% and 25% logging treatments, respectively. Based on the relative contributions of the two regeneration modes after logging, three groups of natural regeneration patterns were classified for dominant woody species in temperate secondary forests, i.e., seed regeneration preference ( Betula dahurica , Carpinus cordata and Fraxinus mandshurica ), sprout regeneration preference ( Acer mono and Acer pseudosieboldianum ) and no preference ( Quercus mongolica , Fraxinus rhynchophylla , and Juglans mandshurica ). Conclusion In addition to enclosure, appropriate logging can be applied according to the responses of various natural regeneration patterns of dominant woody species to logging in temperate secondary forests under the NFPP.
Larch (Larix spp.) is planted after a clear-cut of secondary forests (SFs) to meet the timber demand of Northeast China. However, the declination of soil fertility and the acidification of surface runoff in larch plantations (LPs) resulting from mono-species composition have threatened the sustainable development of LPs. Converting pure LPs into larch-walnut mixed forests can solve those problems, in which it is crucial to promote the seed regeneration of Juglans mandshurica in LPs. The success of walnut seed regeneration is dependent on rodent removing seed away from mother trees and the dispersal processes rely on the stand structure. The spatial distribution pattern between LPs and SFs is a type of stand structure that might affect seed dispersal. There are two typical spatial patterns in Northeast China due to different topographical conditions, that is, contour type (C-T, LPs and SFs located at the same slope position and aspect) and downslope type (D-T, LPs located at the down slope of the adjacent SF in the same aspect). The objectives of our study were to verify the effects of the spatial distribution pattern of LPs on rodent-mediated seed dispersal and to determine the optimal spatial distribution type for seed dispersal. The field trial was conducted by releasing tagged J. mandshurica seeds at three stages of seed rain during two continuous growing seasons in two types of spatial distribution patterns for LPs. We found that contour type had a substantial advantage in the rodent-mediated seed dispersal, that is, the dispersal rate and the proportion of scatter-hoarded seeds in LPs of C-T stands were much higher than in D-T stands, respectively. These differences may be caused by the variation in the topographic factor for these two types of spatial distribution pattern of LPs. In the C-T stands, it was a translational motion for rodents to remove walnuts from SFs to LPs, which would be an energy efficient and favorable method of seed dispersal. Fluctuation of seed abundance had an effect on rodent behaviors and seed fates, that is, there was a faster dispersal rate and lower proportion of seeds in situ in the non-masting year of 2015 than in the masting year of 2016 and proportion of scatter-hoarded seeds reached the highest during the early stage and lowest at the middle stage of seed rain. Thus, the contour type of LPs with a favorable terrain advantage is potentially conducive to dispersing walnut seeds by rodents during early stage of seed rain and converting larch plantations into larch-walnut mixed forests.
Abstract Background Ancient tea plantations with an age over 100 years still reserved at Mengku Town in Lincang Region of Yunan Province, China. However, the characteristic of soil chemicophysical properties and microbial ecosystem in the ancient tea plantations and their impact on tea-leaves chemical components remained unclear. Tea-leaves chemical components including amino acids, phenolic compounds and purine alkaloids, and soil chemicophysical properties including pH, cation exchange capacity (CEC), soil organic matter (SOM), soil organic carbon (SOC), total total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorous (AP) and available potassium (AK), and microbial community structure of modern and ancient tea plantations in five geographic sites (i.e. Bingdao, Baqishan, Banuo, Dongguo and Jiulong) were determined by high performance liquid chromatography (HPLC) and high-throughput sequencing, respectively. Results Tea-leaves chemical components, soil chemicophysical properties and microbial community structures including bacterial and fungal community abundance and diversity evaluated by Chao 1 and Shannon varied with geographic location and tea plantation type. The ancient tea plantations possessed significantly ( P <0.05) higher free amino acids, gallic acid, caffeine and EGC in tea-leaves, as well as soil fertility. The bacterial community structure kept stable, while fungal community abundance and diversity significantly ( P <0.05) increased in ancient tea plantation because of higher soil fertility and lower pH. The long-term plantation in natural cultivation way significantly ( P <0.05) improved the abundances of Nitrospirota, Methylomirabilota, Ascomycota and Mortierellomycota phyla. Conclusions Due to the natural cultivation way, the ancient tea plantations still maintained relatively higher soil fertility and complete soil microbial ecosystem, which contributed to the sustainable development with higher quality in tea-leaves.