OBJECTIVE. An important application of late gadolinium enhancement (LGE) cardiac MRI is accurate assessment of myocardial scar before ablation. However, this is often limited in patients with cardiac implantable electronic devices (CIEDs) because of metal device-induced artifacts. The purpose of this study was to determine whether a modified wideband inversion recovery (IR) LGE MRI technique decreases artifact volume to allow the assessment of myocardial scar. SUBJECTS AND METHODS. Fifty patients (17 women and 33 men; mean age ± SD, 61 ± 12 years; mean ejection fraction ± SD, 35.9% ± 13.3%) with CIEDs underwent cardiac MRI using conventional and modified wideband IR LGE techniques before ablation. The volume of device-induced artifact was quantified and stratified by tertiles on mild, moderate, and severe. Ordinal logistic regression analysis assessed the association between artifact volume on conventional and wideband images adjusted for patients' demographics. RESULTS. Conventional LGE MRI resulted in device-induced hyperintense artifacts that obscured ventricular segments in 32 of 50 (64%) cases. Wideband LGE MRI significantly reduced severe artifact volume (p < 0.0001) and completely resolved all mild and most moderate artifacts. Overall, wideband techniques resulted in a 56% reduction in total artifact volume for the cohort (p < 0.0001). The wideband LGE MRI sequence minimized artifacts in the most commonly obscured segments on the conventional LGE MRI sequence, with persistent artifacts in seven, eight, and four of 32 cases at the basal anterior, midventricular anterior, and midventricular anteroseptal segments, respectively. CONCLUSION. The modified wideband IR technique completely resolves mild and moderate device-induced hyperintense artifacts and significantly reduces the volume of severe artifact to allow accurate identification of myocardial scar in patients with CIEDs before ablation.
Cardiac magnetic resonance (CMR) imaging enables accurate and reproducible quantification of measurements of global and regional ventricular function, blood flow, perfusion at rest and stress as well as myocardial injury. Recent advances in MR hardware and software have resulted in significant improvements in image quality and a reduction in imaging time. Methods for automated and robust assessment of the parameters of cardiac function,blood flow and morphology are being developed. This article reviews the recent advances in image acquisition and quantitative image analysis in CMR.