Cardiomyocyte death is an important pathogenic feature of ischemia and heart failure. Through this study, we showed the synergistic role of HIF‐1α and FoxO3a in cardiomyocyte apoptosis subjected to hypoxia plus elevated glucose levels. Using gene specific small interfering RNAs (siRNA), semi‐quantitative reverse transcriptase polymerase chain reaction (RT‐PCR), Western blot, immunofluorescence, nuclear and cytosolic localization and TUNEL assay techniques, we determined that combined function of HIF‐1α and FoxO3a under high glucose plus hypoxia condition lead to enhanced expression of BNIP3 inducing cardiomyocyte death. Our results highlighted the importance of the synergistic role of HIF‐1α and FoxO3a in cardiomyocyte death which may add insight into therapeutic approaches to pathophysiology associated with ischemic diabetic cardiomyopathies.
Background: Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease.Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage.This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance.Methods: Rats were placed into a SHS exposure chamber and exposed to smog.Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week.After 4 weeks the rats underwent morphological and functional studies.Left ventricular sections were stained with hematoxylin-eosin for histopathological examination.TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot.Results: Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats.These biological markers were enhanced in aging SHS-exposed rats.The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats.Further decrease in the activity of this pathway was observed in aging SHS-exposed rats.TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure.Conclusions: Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke.
Platycodin D (PD) is the main active saponin isolated from Platycodon grandiflorum (PG) and is reported to exhibit anticancer, anti-angiogenic, anti-inflammation and anti-obesity biological effects. The current study aims to evaluate the therapeutic efficacy of PD in cardiac fibrosis and for hypertrophy in spontaneous hypertension rats (SHRs) and to verify inhibition of the signaling pathway. Significant increases in the cardiac functional indices of left ventricular internal diameter end diastole (LVIDd) and left ventricular internal diameter end systole (LVIDs); the eccentric hypertrophy marker p-MEK5; concentric hypertrophy markers, such as CaMKII[Formula: see text] and calcineurin; and expression levels of NFATc3, p-GATA4 and BNP were observed in spontaneously hypertensive groups. PD treatment reversed these increases in SHRs. In addition, an increase in the fibrosis markers FGF2, uPA, MMP2, MMP9, TGF[Formula: see text]-1 and CTGF during cardiac hypertrophy was detected by western blotting analyses. These results demonstrated that PD treatment considerably attenuates cardiac fibrosis. Histopathological examination revealed that PD treatment remarkably reduced collagen accumulation in contrast to spontaneously hypertensive groups. This study clearly suggests that PD provides myocardial protection by alleviating two damaging responses to hypertension, fibrosis and hypertrophy, in the heart.
Cardiovascular diseases have a high prevalence worldwide and constitute the leading causes of mortality. Recently, malfunctioning of β-catenin signaling has been addressed in hypertensive heart condition. Ang-II is an important mediator of cardiovascular remodeling processes which not only regulates blood pressure but also leads to pathological cardiac changes. However, the contribution of Ang-II/β-catenin axis in hypertrophied hearts is ill-defined. Employing in vitro H9c2 cells and in vivo spontaneously hypertensive rats (SHR) cardiac tissue samples, western blot analysis, luciferase assays, nuclear-cytosolic protein extracts, and immunoprecipitation assays, we found that under hypertensive condition β-catenin gets abnormally induced that co-activated LEF1 and lead to cardiac hypertrophy changes by up-regulating the IGF-IIR signaling pathway. We identified putative LEF1 consensus binding site on IGF-IIR promoter that could be regulated by β-catenin/LEF1 which in turn modulate the expression of cardiac hypertrophy agents. This study suggested that suppression of β-catenin expression under hypertensive condition could be exploited as a clinical strategy for cardiac pathological remodeling processes.
Background: Hemorrhagic shock (HS) is the major cause of death from trauma. Hemorrhagic shock may lead to cellular hypoxia and organ damage. Our previous findings showed that HS induced a cardiac apoptosis pathway and synergistically caused myocardial cell damage in diabetic rats under trauma-induced HS. Tetramethylpyrazine (TMP) is a major biologically active ingredient purified from the rhizome of Ligusticum wallichii (called Chuang Xiong in Chinese). Chuan Xiong rescued cells from synergistic cardiomyoblast cell injury under high-glucose (HG) conditions plus hypoxia. TMP is one of the most important active ingredients that elevated the survival rate in ischemic brain injury and prevented inducible NO synthase expression to have anti-inflammatory effects against cell damage in different cell types. Method: Here, we further investigate whether TMP can protect against hypoxic (<1% oxygen) conditions in H9c2 cardiomyoblast cells for 24 hrs. Results: Our results showed that hypoxia mediated through HIF-1α/JNK/p38 activation significantly elevated the levels of the hypoxia-related proteins HIF-1α, BNIP3 and IGFBP3, further enhanced the pro-apoptotic protein Bak and upregulated downstream Caspase 9 and 3, resulting in cell death. All of these phenomena were fully recovered under TMP treatment. We observed that TMP exerted this effect by activating the IGF1 receptor survival pathway, dependent primarily on PI3K/Akt. When PI3K (class I) was blocked by specific siRNA, the hypoxia-induced activated caspase 3 and cell apoptosis could not be reversed by TMP treatment. Conclusion: Our results strongly suggest that TMP could be used to restore hypoxia-induced myocardial cell apoptosis and cardiac hypoxic damage.
Abstract Age-associated cardiovascular disease (CVD) progression is marked by increased misfolded proteins and reduced growth factor receptor activity. Evidence links the co-chaperone CHIP and insulin-like growth factor-1 receptor (IGF1R) to stem cell dynamics and function through miR-764-5p in rat adipose-derived stem cells (rADSCs) remains largely unknown. We observed that short-term hypoxia (6 h) downregulated miR-764-5p in rADSCs, while normoxia conditions led to miR-764-5p upregulation, targeting the 3' UTR region of IGF1R and STUB1/CHIP. qRT-PCR confirmed altered mRNA expression. Overexpression of anti-miR-764-5p enhanced rADSC survival via CHIP and IGF1R upregulation, while miR-764-5p mimic increased ROS generation and apoptosis. HIF1α transcription factor downregulated miR-764-5p under short-term hypoxia. Administering rADSCs anti−miR−764−5p in aging-spontaneously hypertensive rats (SHR) via tail-vein injection demonstrated cardioprotective effects, reducing cardiac hypertrophy, fibrosis, and apoptosis and it could be the potential to act as a regenerative medicine. In conclusion, suppressing miR-764-5p enhances IGF1R expression and CHIP activity in rADSCs, mitigating cardiac hypertrophy and remodeling in the aging-SHR model.
The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF2R) over-expression correlates with heart disease progression. The IGF2R is not only an IGF2 clearance receptor, but it also triggers signal transduction, resulting in cardiac hypertrophy, apoptosis and fibrosis. The present study investigated the nuclear factor IL-3 (NFIL3), a transcription factor of the basic leucine zipper superfamily, and its potential pro-survival effects in cardiomyocytes. NFIL3 might play a key role in heart development and act as a survival factor in the heart, but the regulatory mechanisms are still unclear. IGF2 and IGF2R protein expression were highly increased in rat hearts subjected to hemorrhagic shock. IGF2R protein expression was also up-regulated in H9c2 cells exposed to hypoxia. Over-expression of NFIL3 in H9c2 cardiomyoblast cells inhibited the induction of hypoxia-induced apoptosis and down-regulated IGF2R expression levels. Gel shift assay, double-stranded DNA pull-down assay and chromatin immune-precipitation analyses indicated that NFIL3 binds directly to the IGF2R promoter region. Using a luciferase assay, we further observed NFIL3 repress IGF2R gene promoter activity. Our results demonstrate that NFIL3 is an important negative transcription factor, which through binding to the promoter of IGF2R, suppresses the apoptosis induced by IGF2R signaling in H9c2 cardiomyoblast cells under hypoxic conditions.