A new large-area Washington M,T2 + DDO51 filter survey of more than 10 deg2 around the Carina dSph galaxy reveals a spectroscopically confirmed power law radial density “break population of Carina giant stars extending several degrees beyond the central King profile. Magellan telescope MIKE spectroscopy establishes the existence of Carina stars to at least 4.5 times its central King limiting radius, rlim and primarily along Carina’s major axis. To keep these stars bound to the dSph would require a global Carina mass-to-light ratio of M/L ≥ 6,300 (M/L)⊙. The MIKE velocities, supplemented with ∼ 950 additional Carina field velocities from archived VLT+GIRAFFE spectra with r . rlim, demonstrate a nearly constant Carina velocity dispersion (σv) to just beyond r = rlim, and both a rising σv and a velocity shear at still larger radii. Together, the observational evidence suggests that the discovered extended Carina population represents tidal debris from the dSph. Of 65 giant candidates at large angular radii from the Carina center for which MIKE spectra have been obtained 94% are associated either with Carina or a second, newly discovered diffuse, but strongly radial velocity-coherent (σv=9.8 km s−1), foreground halo system. The fifteen stars in this second, retrograde velocity population have (1) a mean metallicity ∼ 1 dex higher than that of Carina, and (2) colors and magnitudes consistent with the red clump of the Large Magellanic Cloud (LMC). Additional spectroscopy of giant star candidates in fields linking Carina and the LMC show a smooth velocity gradient between the LMC and the retrograde Carina moving group. We conclude that we have found Magellanic stars almost twice as far (22) from the LMC center than previously known. Subject headings: Carina Dwarf – galaxies: Local Group – kinematics and dynamics – Magellanic Clouds –cosmology : dark matter
The James Webb Space Telescope (JWST) is a segmented deployable telescope, currently operating at L2. The telescope utilizes 6 degrees of freedom for adjustment of the Secondary Mirror (SM) and 7 degrees of freedom for adjustment of each of its 18 segments in the Primary Mirror (PM). After deployment, the PM segments and the SM arrived in their correct optical positions to within a ~1 mm, with accordingly large wavefront errors. A Wavefront Sensing and Controls (WFSC) process was executed to adjust each of these optical elements in order to correct the deployment errors and produce diffraction-limited images across the entire science field. This paper summarizes the application of the WFSC process.
We present in this study a first analysis of the astrometric error budget of absolute astrometry relative to background galaxies using adaptive optics. We use for this analysis multi-conjugated adaptive optics (MCAO) images obtained with GeMS/GSAOI at Gemini South. We find that it is possible to obtain 0.3 mas reference precision in a random field with 1 hour on source using faint background galaxies. Systematic errors are correctable below that level, such that the overall error is approximately 0.4 mas. Because the reference sources are extended, we find it necessary to correct for the dependency of the PSF centroid on the used aperture size, which would otherwise cause an important bias. This effect needs also to be considered for Extremely Large Telescopes (ELTs). When this effect is corrected, ELTs have the potential to measure proper motions of dwarfs galaxies around M31 with 10 km/s accuracy over a baseline of 5 years.
We present in this study a first analysis of the astrometric error budget of absolute astrometry relative to background galaxies using adaptive optics. We use for this analysis multi-conjugated adaptive optics (MCAO) images obtained with GeMS/GSAOI at Gemini South. We find that it is possible to obtain 0.3 mas reference precision in a random field with 1 hour on source using faint background galaxies. Systematic errors are correctable below that level, such that the overall error is approximately 0.4 mas. Because the reference sources are extended, we find it necessary to correct for the dependency of the PSF centroid on the used aperture size, which would otherwise cause an important bias. This effect needs also to be considered for Extremely Large Telescopes (ELTs). When this effect is corrected, ELTs have the potential to measure proper motions of dwarfs galaxies around M31 with 10 km/s accuracy over a baseline of 5 years.
This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.
We present in this study a first analysis of the astrometric error budget of absolute astrometry relative to back- ground galaxies using adaptive optics. We use for this analysis multi-conjugated adaptive optics (MCAO) images obtained with GeMS/GSAOI at Gemini South. We find that it is possible to obtain 0.3 mas reference precision in a random field with 1 hour on source using faint background galaxies. Systematic errors are correctable below that level, such that the overall error is approximately 0.4 mas. Because the reference sources are extended, we find it necessary to correct for the dependency of the PSF centroid on the used aperture size, which would oth- erwise cause an important bias. This effect needs also to be considered for Extremely Large Telescopes (ELTs). When this effect is corrected, ELTs have the potential to measure proper motions of dwarfs galaxies around M31 with 10 km/s accuracy over a baseline of 5 years.