The frequency of summer flood events has strongly increased in Eastern Europe during the last decades. The creation of water storage areas to avoid flooding is often combined with the re-creation of more natural and biodiverse riverine systems. This urges the need to understand the consequences of summer inundation, when microbial activity is significantly higher than during winter inundation, for floodplain biogeochemistry. In order to test the interacting effects of temporal flooding, water quality and agricultural use we used a mesocosm design with sods including vegetation from an area along a tributary of the Vistula River, where water storage compartments have been planned. Concentrations of nitrate and sulphate in the flood water, expected to interfere with soil redox processes, were varied at environmentally relevant concentrations. Inundation led to increased nutrient mobilization in all treatments, particularly for phosphate which reached very high concentrations in both soil water (200–300 μmol l−1) and overlaying surface water (25–35 μmol l−1) as a result of iron reduction. The response was clearly linked to different soil characteristics like the Olsen P concentration, probably caused by varying kind of land use. Unexpectedly, the flood water quality played a less important role in the response to short-term flooding. This could partly be explained by the relatively low infiltration rate into these waterlogged soils, indicating the importance of local hydrology. The findings of this study are important to understand and predict the effects of (more frequent) summer flooding of Eastern European rivers. It also indicates that it is necessary to take into account the soil quality in assessing the consequences of planned measures on biodiversity and ecosystem functioning.
We report on two experiments with oilseed rape (Brassica napus L.) to test if partial root-zone drying techniques improve yield in a crop in which vegetative and reproductive growth overlap (indeterminate growth habit), and to investigate what plant morphological responses contribute to the yield that is realized. Deficit irrigation resulted in smaller plants with smaller yields but larger seeds compared to treatments with shallow groundwater (first experiment) and with fully watered conditions (second experiment). Different partial root-zone drying treatments (water supply patterns) under deficit irrigation, however, had little effect on plant growth and yield components (number of branches, branch lengths, number of pods, etc.). Our results suggest that partial root-zone drying doesn’t work well with oilseed rape. Detailed measurements of soil water contents and root distribution indicate that roots were extremely plastic, effectively foraging for water, and these root responses may have overwhelmed physiological effects of partial root drying on the shoot. Furthermore, in crops with indeterminate growth with a short vegetative growth phase, partial root-zone drying may be ineffective in enhancing the major yield components. Further reasons for the lack of success are discussed.
The rise of the bioeconomy is usually associated with increased sustainability. However, various controversies suggest doubts about this assumed relationship. The objective of this paper is to identify different visions and the current understanding of the relationship between the bioeconomy and sustainability in the scientific literature by means of a systematic review. After a search in several databases, 87 scientific journal articles were selected for review. Results show that visions about the relationship between bioeconomy and sustainability differ substantially. Four different visions were identified, including: (1) the assumption that sustainability is an inherent characteristic of the bioeconomy; (2) the expectation of benefits under certain conditions; (3) tentative criticism under consideration of potential pitfalls; and (4) the assumption of a negative impact of the bioeconomy on sustainability. There is considerable attention for sustainability in the scientific bioeconomy debate, and the results show that the bioeconomy cannot be considered as self-evidently sustainable. In further research and policy development, good consideration should therefore be given to the question of how the bioeconomy could contribute to a more sustainable future. Furthermore, it is stressed that the bioeconomy should be approached in a more interdisciplinary or trans-disciplinary way. The consideration of sustainability may serve as a basis for such an approach.
Plants need different survival strategies in habitats differing in hydrological regimes. This probably has consequences for vegetation development when former floodplain areas that are currently confronted with soil flooding only, will be reconnected to the highly dynamical river bed. Such changes in river management are increasingly important, especially at locations where increased water retention can prevent flooding events in developed areas. It is therefore crucial to determine the responses of plant species from relatively low-dynamic wetlands to complete submergence, and to compare these with those of species from river forelands, in order to find out what the effects of such landscape-scale changes on vegetation would be. To compare the species' tolerance to complete submergence and their acclimation patterns, a greenhouse experiment was designed with a selection of 19 species from two contrasting sites: permanently wet meadows in a former river foreland, and frequently submerged grasslands in a current river foreland. The plants were treated with short (3 weeks) and long (6 weeks) periods of complete submergence, to evaluate if survival, morphological responses, and changes in biomass differed between species of the two habitats. All tested species inhabiting river forelands were classified as tolerant to complete submergence, whereas species from wet meadows showed either relatively intolerant, intermediate or tolerant responses. Species from floodplains showed in all treatments stronger shoot elongation, as well as higher production of biomass of leaves, stems, fine roots and taproots, compared with meadow species. There is a strong need for the creation of temporary water retention basins during high levels of river discharge. However, based on the data presented, it is concluded that such reconnection of former wetlands (currently serving as meadows) to the main river bed will strongly influence plant species composition and abundance.
Through structured interviews and statistical analyses, this study investigated access to water and strategies of 1227 vulnerable households in Bandung, Indonesia. The use of mixed water sources, household water treatment, and home storage suggest low trust in improved sources, and compromised safety and reliability of water. While official statistics suggest a high level of access to improved water sources, full-time access to such sources is overestimated. Integration of user behavior into the new monitoring approach for the water supply sector in the post-2015 development framework is proposed.
While multi-functional river rehabilitation has taken the limelight in today's water management, its follow-up phase, maintenance, has done so to a far lesser extent. A key challenge for today´s environmental management is the number and diversity of actors and sectors involved, each with their own perceptions, interests and resources. This chapter seeks to apply the gains made in the Joint Planning Approach (JPA), developed earlier at Radboud University, the Netherlands, to the maintenance stage of river planning. The application of that approach in the densely populated Netherlands is contrasted with an example of top-down, mono-functional maintenance in a floodplain area in the southwest. It is found that the approach brings considerable opportunities to integrate a fragmented field but that considerable challenges remain related to fragmented policies, building collaborative entities, and organizational constraints.