The thermodynamic consequences of interactions of native bovine serum albumin (BSA) with two smaller solutes (glycine betaine or urea) in aqueous solution are characterized by a novel application of vapor pressure osmometry (VPO), which demonstrates the utility of this method of investigating preferential interactions involving solutes that are either accumulated or excluded near the surface of a protein. From VPO measurements of osmolality (water activity) as a function of the solute concentration in the presence and absence of BSA, we determine the dependence of the solute molarity (C3) on that of BSA (C2) at fixed temperature (37 °C), pressure (∼1 atm), and osmolality (over the range 0−1.6 molal). After some thermodynamic transformations, these results yield values of m ≡ limm2→0(∂m3/∂m2)T,P,μ3, which characterizes the interdependence of solute molalities when temperature, pressure, and the chemical potential of solute 3 are fixed. This form of the preferential interaction coefficient can be interpreted directly in terms of the molecular exclusion or accumulation of the solute (relative to water) near the protein surface. Within experimental uncertainty, m is proportional to m3 both for glycine betaine (0−0.9 m) and for urea (0−1.6 m). For glycine betaine ∂m /∂m3 = −49 ± 4, a value consistent with the interpretation that this solute is completely excluded from the hydrated surface of BSA, whereas for urea ∂m /∂m3 = 6 ± 1, which indicates a moderate extent of accumulation at the surface of native BSA. The preferential accumulation of solutes (e.g., urea) that have some binding affinity for a protein can be quantified and interpreted using the two-domain model if the extent of hydration of the protein has been determined using a completely excluded solute (e.g., glycine betaine). Complete exclusion from the local hydration domain surrounding proteins, if general, justifies the use of glycine betaine as a thermodynamic probe of the changes in hydration that accompany protein folding, protein association, and protein−ligand binding interactions.
Control of infection caused by Leishmania major requires the development of IFN-gamma+CD4+ lymphocytes for the induction of microbicidal activity in host macrophages. We recently reported on the inability of conventionally resistant C57BL/6 mice to successfully resolve infection by an isolate of L. major, despite a strong IFN-gamma response by the host. Susceptibility was caused by Ag-specific IL-10 from CD4+ cells that were also producing IFN-gamma. In the present studies, we have explored the role for IL-27 in the regulation of IL-10 from Th1 cells in leishmaniasis. Cytokine analysis of CD4+ cells in the lesions and draining lymph nodes of infected IL-27R-deficient (WSX-1(-/-)) mice revealed diminished IL-10 from IFN-gamma+ CD4+ cells, which was accompanied by a reduction in total IFN-gamma+CD4+ cells and an increase in IL-4. Despite the inhibition of IL-10 from CD4+ cells, no significant change in parasite numbers was observed, due both to the shift in the Th1/Th2 balance and to residual levels of IL-10. Strikingly, infected WSX-1(-/-) mice developed more severe lesions that were associated with the appearance of IL-17+ CD4+ cells, demonstrating a function for IL-27 in blocking the development of inappropriate Th17 cells during L. major infection. The results demonstrate the pleiotropic effects that IL-27 has on L. major-driven Th1, Th2, and Th17 development, and reinforce its function as a key regulatory cytokine that controls the balance between immunity and pathology.