Separation of lipoproteins by traditional sequential salt density floatation is a prolonged process ( approximately 72 h) with variable recovery, whereas iodixanol-based, self-generating density gradients provide a rapid ( approximately 4 h) alternative. A novel, three-layered iodixanol gradient was evaluated for its ability to separate lipoprotein fractions in 63 subjects with varying degrees of dyslipidemia. Lipoprotein cholesterol, triglycerides, and apolipoproteins were measured in 21 successive iodixanol density fractions. Iodixanol fractionation was compared with sequential floatation ultracentrifugation. Iodixanol gradient formation showed a coefficient of variation of 0.29% and total lipid recovery from the gradient of 95.4% for cholesterol and 84.7% for triglyceride. Recoveries for VLDL-, LDL-, and HDL-cholesterol, triglycerides, and apolipoproteins were approximately 10% higher with iodixanol compared with sequential floatation. The iodixanol gradient effectively discriminated classic lipoproteins and their subfractions, and there was evidence for improved resolution of lipoproteins with the iodixanol gradient. LDL particles subfractionated by the gradient showed good correlation between density and particle size with small, dense LDL (<25.5 nm) separated in fractions with density >1.028 g/dl. The new iodixanol density gradient enabled rapid separation with improved resolution and recovery of all lipoproteins and their subfractions, providing important information with regard to LDL phenotype from a single centrifugation step with minimal in-vitro modification of lipoproteins.
The incubation of rat liver microsomal fraction with a serum preparation followed by the re-isolation of the microsomal membranes has resulted in an increase in the concentration of non-esterified cholesterol, a considerable decrease in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase and in an increase in the activity of acyl-CoA-cholesterol acyltransferase in the treated microsomal preparation. These effects were related to the concentration of serum in the incubation mixture and to the duration of the incubation. The transfer of non-esterified cholesterol was specific in that the content of protein and the total phospholipids were similar in the original microsomal fraction and the serum-treated microsomal preparation. The incubation of the microsomal fraction with lipoprotein-deficient serum or with no serum resulted in both cases in small changes in the non-esterified cholesterol, the esterified cholesterol and the total phospholipid content in the treated preparations compared with these concentrations in the original microsomal fraction, whereas the activity of acyl-CoA-cholesterol acyltransferase and of 3-hydroxy-3-methylglutaryl-CoA reductase was similar in the lipoprotein-deficient-serum-treated and the buffer-treated microsomal preparations. The activity of 3-hydroxy-3-methylglutaryl-CoA reductase was lower and the activity of acyl-CoA-cholesterol acyltransferase was higher in the lipoprotein-deficient-serum-treated and the buffer-treated microsomal preparations as compared with these activities in the original microsomal fraction. However, the serum-treated microsomal preparation had considerably lower activity of 3-hydroxy-3-methylglutaryl-CoA reductase and considerably higher activity of acyl-CoA-cholesterol acyltransferase than these activities in buffer-treated and in lipoprotein-deficient-serum-treated microsomal preparations.