The domestication of wild goats and subsequent intensive trait-driven crossing, inbreeding, and selection have led to dramatic phenotypic purification and intermediate breeds for the high-quality production of dairy, cashmere wool, and meat. Genomic resequencing provides a powerful means for the direct identification of trait-associated sequence variations that underlie molecular mechanisms of domestication.Here, we report our effort to define such variations based on data from domestic goat breeds (Capra aegagrus hircus; five each) selected for dairy, cashmere, and meat production in reference to their wild ancestors, the Sindh ibex (Capra aegagrus blythi; two) and the Markhor (Capra falconeri; two). Using ∼24 million high-quality single nucleotide polymorphisms (SNPs), ∼1.9 million insertions/deletions, and 2,317 copy number variations, we define SNP-desert-associated genes (SAGs), domestic-associated genes (DAGs), and trait-associated genes (TAGs) and attempt to associate them with quantitative trait loci (QTL), domestication, and agronomic traits. A greater majority of SAGs shared by all domestic breeds are classified into Gene Ontology categories of metabolism and cell cycle. DAGs, together with some SAGs, are most relevant to behavior, immunity, and trait specificity. Whereas, TAGs such as growth differentiation factor 5 and fibroblast growth factor 5 for bone and hair growth, respectively, appear to be directly involved in growth regulation.When investigating the divergence of Capra populations, the sequence variations and candidate function-associated genes we have identified provide valuable molecular markers for trait-driven genetic mapping and breeding.
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and disrupted bone architecture, predisposing the patient to increased fracture risk. Evidence from early genetic epidemiological studies has indicated a major role for genetics in the development of osteoporosis and the variation in BMD. In this study, we focused on two key genes in the endochondral ossification pathway, IBSP and PTHLH. Over 9,000 postmenopausal Han Chinese women were recruited, and 54 SNPs were genotyped. Two significant SNPs within IBSP, rs1054627 and rs17013181, were associated with BMD and postmenopausal osteoporosis by the two-stage strategy, and rs17013181 was also significantly associated with serum IBSP levels. Moreover, one haplotype (rs12425376-rs10843047-rs42294) covering the 5' end of PTHLH was associated with postmenopausal osteoporosis. Our results provide evidence for the association of these two key endochondral ossification pathway genes with BMD and osteoporosis in postmenopausal Han Chinese women. Combined with previous findings, we provide evidence that a particular SNP in IBSP has an allele-specific effect on mRNA levels, which would, in turn, reflect serum IBSP levels.
Schizophrenia (SCZ) is a severe and debilitating mental disorder, and the specific genetic factors that underlie the risk for SCZ remain elusive. The autism susceptibility candidate 2 (AUTS2) gene has been reported to be associated with autism, suicide, alcohol consumption, and heroin dependence. We hypothesized that AUTS2 might be associated with SCZ. In the present study, three polymorphisms (rs6943555, rs7459368, and rs9886351) in the AUTS2 gene were genotyped in 410 patients with SCZ and 435 controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and forced PCR-RFLP methods. We detected an association between SCZ and the rs6943555 genotype distribution (odds ratio (OR) = 1.363, 95% confidence interval (CI): 0.848–2.191, p = 0.001). The association remained significant after adjusting for gender, and a significant effect (p = 0.001) was observed among the females. In the present study, rs6943555 was determined to be associated with female SCZ. Our results confirm previous reports which have suggested that rs6943555 might elucidate the pathogenesis of schizophrenia and play an important role in its etiology.
Whole-genome shotgun (WGS) sequencing has become a routine method in genome research over the past decade. However, the assembly of highly polymorphic regions in WGS projects remains a challenge, especially for large genomes. Employing BAC library constructing, PCR screening and Sanger sequencing, traditional strategy is laborious and expensive, which hampers research on polymorphic genomic regions. As one of the most highly polymorphic regions, the major histocompatibility complex (MHC) plays a central role in the adaptive immunity of all jawed vertebrates. In this study, we introduced an efficient procedure based on recombination screening and short-reads assembly. With this procedure, we constructed a high quality 488-kb region of crested ibis MHC that consists of 3 superscaffolds and contains 50 genes. Our sequence showed comparable quality (97.29% identity) to traditional Sanger assembly, while the workload was reduced almost 7 times. Comparative study revealed distinctive features of crested ibis by exhibiting the COL11A2-BLA-BLB-BRD2 cluster and presenting both ADPRH and odorant receptor (OR) gene in the MHC region. Furthermore, the conservation of the BF-TAP1-TAP2 structure in crested ibis and other vertebrate lineages is interesting in light of the hypothesis that coevolution of functionally related genes in the primordial MHC is responsible for the appearance of the antigen presentation pathways at the birth of the adaptive immune system.
As one of the most endangered species, tiger (Panthera tigris) inbreeding has become an urgent issue to address. Using a microsatellite (short tandem repeat, STR) identification system, paternity testing may be helpful to avoid inbreeding in captive breeding programs. In this study, we developed a genome-based identification system named tiger pedigree identification multiplex system (TPI-plex). By analyzing the entire tiger genome, 139,967 STR loci were identified and 12.76% of these displayed three to six alleles among three re-sequenced individual tiger genomes. A total of 204 candidate STRs were identified and screened with a reference population containing 31 unrelated captive tigers. Of these, 15 loci were chosen for inclusion in the multiplex panel. The mean allele number and mean expected heterozygosity (He) were 7.3333 and 0.7789, respectively. The cumulative probability of exclusion (CPE) and total probability of discrimination power (TDP) reached 0.999999472 and 0.999999999999995, respectively. The results showed that the TPI-plex system can be applied in routine pedigree identification for captive tigers. We also added a sex identification marker named TAMEL into the TPI-plex for sex determination.