Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
The ability to attach redox-active molecules to oxide surfaces in controlled architectures (distance, orientation, packing density) is essential for the design of a variety of molecular-based information storage devices. We describe the synthesis of a series of redox-active molecules wherein each molecule bears a benzylphosphonic acid tether. The redox-active molecules include zinc porphyrins, a cobalt porphyrin, and a ferrocene-zinc porphyrin. An analogous tripodal tether has been prepared that is based on a tris[4-(dihydroxyphosphorylmethyl)phenyl]-derivatized methane. A zinc porphyrin is linked to the methane vertex by a 1,4-phenylene unit. The tripodal systems are designed to improve monolayer stability and ensure vertical orientation of the redox-active porphyrin on the electroactive surface. For comparison purposes, a zinc porphyrin bearing a hexylphosphonic acid tether also has been prepared. The synthetic approaches for introduction of the phosphonic acid group include derivatization of a bromoalkyl porphyrin or use of a dimethyl or diethyl phosphonate substituted precursor in a porphyrin-forming reaction. The latter approach makes use of dipyrromethane building blocks bearing mono or tripodal dialkyl phosphonate groups. The zinc porphyrin-tripodal compound bearing benzylphosphonic acid legs tethered to a SiO(2) surface (grown on doped Si) was electrically well-behaved and exhibited characteristic porphyrin oxidation/reduction waves. Collectively, a variety of porphyrinic molecules can now be prepared with tethers of different length, composition, and structure (mono or tripodal) for studies of molecular-based information storage on oxide surfaces.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
The synthesis and characterization of various triads composed of a linear array of two zinc porphyrins joined via an intervening bis(dipyrrinato)metal(II) complex are reported. The preparation exploits the facile complexation of dipyrrins with divalent metal ions to give bis(dipyrrinato)metal(II) complexes [abbreviated (dp)(2)M]. Copper(II) and palladium(II) chelates of dipyrrins (available by oxidation of dipyrromethanes) were prepared in 50-80% yield. A one-flask synthesis of bis(dipyrrinato)zinc(II) complexes was developed by oxidation of a dipyrromethane with DDQ or p-chloranil in the presence of Zn(OAc)(2).2H(2)O in THF ( approximately 80% yield). Three routes were developed for preparing porphyrin-dipyrrins: (1). Suzuki coupling of a boronate-substituted zinc porphyrin (ZnP) and bis[5-(4-iodophenyl)dipyrrinato]Pd(II) to give the (ZnP-dp)(2)Pd triad (50% yield), followed by selective demetalation of the (dp)(2)Pd unit by treatment with 1,4-dithiothreitol under neutral conditions (71% yield); (2). oxidation of a porphyrin-dipyrromethane with p-chloranil in the presence of Zn(OAc)(2).2H(2)O followed by chromatography on silica gel (71% yield); and (3). condensation of a dipyrrin-dipyrromethane and a dipyrromethane-dicarbinol under InCl(3) catalysis followed by oxidation with DDQ (10-16% yield). Four triads of form (ZnP-dp)(2)Zn were prepared in 83-97% yield by treatment of a porphyrin-dipyrrin with Zn(OAc)(2).2H(2)O at room temperature. Free base dipyrrins typically absorb at 430-440 nm, while the bis(dipyrrinato)metal complexes absorb at 460-490 nm. The fluorescence spectra/yields and excited-state lifetimes of the (ZnP-dp)(2)Zn triad in toluene show (1). efficient energy transfer from the bis(dipyrrinato)zinc(II) chromophore to the zinc porphyrins (98.5% yield), and (2). little or no quenching of the resulting excited zinc porphyrin relative to the isolated chromophore. Taken together, these results indicate that bis(dipyrrinato)zinc(II) complexes can serve as self-assembling linkers that further function as secondary light-collection elements in porphyrin-based light-harvesting arrays.
TMSOTf-catalyzed isomerization of acetates of the Baylis - Hillman adducts, i.e. methyl 3-acetoxy-3-aryl-2-methylenepropanoates and 3-acetoxy-3-aryl-2-methylenepropanenitriles providing methyl (2E)-2-(acetoxymethyl)-3-arylprop-2-enoates and (2E)-2-(acetoxymethyl)-3-arylprop-2-enenitriles, respectively, is described.