The oil-producing fungus Mortierella alpina 1S-4 is an industrial strain for arachidonic acid (AA) production. To determine its physiological properties and to clarify the biosynthetic pathways for PUFA, heterologous and homologous gene expression systems were established in this fungus. The first trial was performed with an enhanced green fluorescent protein gene to assess the transformation efficiency for heterologous gene expression. As a result, strong fluorescence was observed in the spores of the obtained transformant, suggesting that the foreign gene was inherited by the spores. The next trial was performed with a homologous PUFA elongase (GLELOp) gene, this enzyme having been reported to catalyze the elongation of GLA (18:3n-6) to dihomo-gamma-linolenic acid (20:3n-6), and to be the rate-limiting step of AA production. The FA composition of the transformant was different from that of the host strain: The GLA content was decreased whereas that of AA was increased. These data support the hypothesis that the GLELOp enzyme plays an important role in PUFA synthesis, and may indicate how to control PUFA biosynthesis.
Fatty acyl-CoA thioesterase (Tes) and acyl-CoA synthetase (FadD) catalyze opposing reactions between acyl-CoAs and free fatty acids. Within the genome of Corynebacterium glutamicum, several candidate genes for each enzyme are present, although their functions remain unknown. Modified expressions of the candidate genes in the fatty acid producer WTΔfasR led to identification of one tes gene (tesA) and two fadD genes (fadD5 and fadD15), which functioned positively and negatively in fatty acid production, respectively. Genetic analysis showed that fadD5 and fadD15 are responsible for utilization of exogenous fatty acids and that tesA plays a role in supplying fatty acids for synthesis of the outer layer components mycolic acids. Enzyme assays and expression analysis revealed that tesA, fadD5, and fadD15 were co-expressed to create a cyclic route between acyl-CoAs and fatty acids. When fadD5 or fadD15 was disrupted in wild-type C. glutamicum, both disruptants excreted fatty acids during growth. Double disruptions of them resulted in a synergistic increase in production. Additional disruption of tesA revealed a canceling effect on production. These results indicate that the FadDs normally shunt the surplus of TesA-generated fatty acids back to acyl-CoAs for lipid biosynthesis and that interception of this shunt provokes cells to overproduce fatty acids. When this strategy was applied to a fatty acid high-producer, the resulting fadDs-disrupted and tesA-amplified strain exhibited a 72% yield increase relative to its parent and produced fatty acids, which consisted mainly of oleic acid, palmitic acid, and stearic acid, on the gram scale per liter from 1% glucose.IMPORTANCE The industrial amino acid producer Corynebacterium glutamicum has currently evolved into a potential workhorse for fatty acid production. In this organism, we obtained evidence showing the presence of a unique mechanism of lipid homeostasis, namely, a formation of a futile cycle of acyl-CoA hydrolysis and resynthesis mediated by acyl-CoA thioesterase (Tes) and acyl-CoA synthetase (FadD), respectively. The biological role of the coupling of Tes and FadD would be to supply free fatty acids for synthesis of the outer layer components mycolic acids and to recycle their surplusage to acyl-CoAs for membrane lipid synthesis. We further demonstrated that engineering of the cycle in a fatty acid high-producer led to dramatically improved production, which provides a useful engineering strategy for fatty acid production in this industrially important microorganism.
For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicumIMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis, which use an individual nonaggregating type II fatty acid synthase (FAS-II) system. In this study, we reported genetic evidence demonstrating that the FAS-I system is the source of the biotin precursor in vivo in the engineered biotin-prototrophic C. glutamicum strain. This study also uncovered the important physiological role of FasB in lipoic acid biosynthesis. Here, we present an FAS-I enzyme that functions in supplying the lipoic acid precursor, although its biosynthesis has been believed to exclusively depend on FAS-II in organisms. The findings obtained here provide new insights into the metabolic engineering of this industrially important microorganism to produce these compounds effectively.
Several acetic acid bacteria of the genus Acetobacter oxidize much acetate oxidation, which is not desired in vinegar manufacturing. Acetobacter rancens SKU 1111, a strong acetate oxidant, grew rapidly with a biphasic growth curve while consuming acetate in the second growth phase. Acetobacter aceti IFO 3284 did not show extensive acetate oxidation. Addition of glycerol to the culture medium of Acetobacter rancens SKU 1111 increased acetate oxidation and resulted in more biomass in the second growth phase than when glycerol was not added. Enzyme activities of acetyl-CoA synthetase and phosphotransacetylase in the organism were high during acetate oxidation. The activity of phosphoenolpyruvate carboxylase was most stimulated by a trace amount of acetyl-CoA among the enzymes of glycerol catabolism. Phosphoenolpyruvate carboxylase in A. rancens SKU 1111 showed a sigmoidal saturation curve with acetyl-CoA. This finding suggested that strong acetate oxidation caused by acetyl-CoA synthetase or phosphotransacetylase activity, together with phosphoenolpyruvate carboxylase, increased the biomass.