We recently reported that TRH-deficient mice showed characteristic tertiary hypothyroidism. In the present study, we investigated how this tertiary hypothyroidism occurred particularly in pre- and postnatal stages. Immunohistochemical analysis revealed a number of TSH-immunopositive cells in the TRH-/- pituitary on embryonic day 17.5 and at birth. The mutant pituitary at birth in pups born from TRH-deficient dams also showed no apparent morphological changes, indicating no requirement of either maternal or embryonic TRH for the development of pituitary thyrotrophs. In contrast, apparent decreases in number and level of staining of TSH-immunopositive cells were observed after postnatal day 10 in mutant pituitary. Similar decreases were observed in the 8-week-old mutant pituitary, while no apparent changes were observed in other pituitary hormone-producing cells, and prolonged TRH administration completely reversed this effect. Consistent with these morphological results, TRH-/- mice showed normal thyroid hormone levels at birth, but the subsequent postnatal increase was depressed, resulting in hypothyroidism. As expected, TSH content in the TRH-/- pituitary showed a marked reduction to only 40% of that in the wild type. Despite hypothyroidism in the mutant mice, both the pituitary TSHbeta and alpha mRNA levels were lower than those of the wild-type pituitary. These phenotypic changes were specific to the pituitary thyrotrophs. These findings indicated that 1) TRH is essential only for the postnatal maintenance of the normal function of pituitary thyrotrophs, including the normal feedback regulation of the TSH gene by thyroid hormone; 2) neither maternal nor embryonic TRH is required for normal development of the fetal pituitary thyrotroph; and 3) TRH-deficient mice do not exhibit hypothyroidism at birth. Moreover, reflecting its name, TRH has more critical effects on the pituitary thyrotrophs than on other pituitary hormone-producing cells.
Abstract Background Myeloid / Lymphoid or Mixed-lineage leukemia gene (MLL) is translocated to chromosome 11 long arm q23 region (11q23) and the MLL fusion gene expressed as a result of translocation reconstruction plays an important role in MLL-related leukemia development. It has also been reported that MLL and MLL protein play an important role in tumor development as a Menin-binding protein in Multiple Endocrine Neoplasia Type I (MEN1). More recently, normal MLL protein has been shown to have histone H3 lysine 4-methylation (H3K4-HMT) activity and to be an epigenetic transcriptional regulator. In addition, the function of MLL protein as a histone methylase has been reported in the gene region involved in metabolism regions. Here, we analyzed the involvement of MLL in glucose metabolism in the pancreas using MLL knockout mice. Methods Glucose metabolism in MLL knockout mice and the function of MLL in cultured cells were analyzed. Result: Since the homozygotes of MLL knockout mice are embryonic lethal, we analyzed them using Heterozygous mice. MLL heterozygous mice showed significantly weight loss compared to the wild type mice. MLL heterozygous mice showed no difference in food intake compared to wild type mice. IPGTT showed impaired glucose tolerance in MLL heterozygous mice. However, ITT showed no insulin resistance and decreased insulin secretion during glucose loading. In GSIS tests, Islets isolated from heterozygous mice pancreas have been observed to decrease insulin secretion in the response to glucose stimulation. In comprehensive gene analysis using Microarray analysis of mRNA extracted from mice islet, the gene expression changes related insulin secretion and apoptosis have been revealed in MLL heterozygous mice. Histological search showed no decrease in β-cell number, and immunohistological search showed no difference in insulin, glucagon, and TUNEL staining between heterozygous and wild type mice. And also, MLL knockdown was performed in a cultured cell line. Insulin secretion was decreased to glucose stimulation in MLL knockdown cell line same as in MLL knockout mice. In addition, RNA microarrays were performed to these cell lines, several same genes that have confirmed in MLL mouse islets were observed in MLL knockdown cell. In common to both MLL knockout mice and MLL knockdown cell line, the expression levels of GLUT1 and GLUT2 were decreased. In conclusion, MLL knockout mice showed decreased insulin secretion. It was suggested that MLL may be involved in insulin secretion through decreased expression of the GULT1 gene and GLUT2 genes in islets. Presentation: No date and time listed
Abstract Background Amrubicin chemotherapy is a treatment option for patients with non‐small cell lung cancer (NSCLC) after third‐line treatment in Japan. Although topoisomerase‐II (Topo‐II), a target of amrubicin, has been reported to be a prognostic or predictive marker for chemosensitivity and clinical outcomes in various types of malignancies, its effects in the Japanese population remain unknown. Methods Data regarding 44 patients with advanced NSCLC treated with amrubicin between April 2004 and May 2014 were retrospectively analyzed. We evaluated the expression levels of Topo‐II by immunohistochemical staining of tumor specimens obtained via biopsy or surgical resection. Results The majority of enrolled patients were men (68%) with a median age of 67 (range, 43–78) years. The most common histological type was adenocarcinoma (70%). High Topo‐II expression was observed in 13 (30%) of the 44 patients. The median progression‐free survival and overall survival (OS) durations were 1.8 and 8.8 months, respectively. While there was no significant association between Topo‐II expression and progression‐free survival, patients with low Topo‐II expression had significantly longer OS than did those with high Topo‐II expression. Good performance status and low expression of Topo‐II were all significantly associated with a favorable OS. Conclusion Low expression of Topo‐II was identified as an independent prognostic factor for longer survival in patients with NSCLC receiving amrubicin, a Topo‐II inhibitor. Key points Significant findings of the study The median progression‐free survival and overall survival (OS) durations were 1.8 and 8.8 months, respectively. While there was no significant association between Topo‐II expression and progression‐free survival, patients with low Topo‐II expression had significantly longer OS than did those with high Topo‐II expression. Good performance status and low expression of Topo‐II were all significantly associated with a favorable OS. What this study adds This study is the first to assess the effects of topoisomerase‐II (Topo‐II), a target of amrubicin, as a prognostic or predictive marker for chemosensitivity and clinical outcomes in the Japanese population.
We report a 54-year-old Japanese woman with enlargement of her hands and feet, and tachycardia over the previous 3 years. She had a TSH- and GH-producing pituitary adenoma 3.5 × 3.0 × 2.0 cm. A bromocriptine test was performed. Bromocriptine was slightly effective for GH inhibition, but, she complained of headaches, nausea, and impaired vision 24 hours after bromocriptine administration. MRI examination showed heterogeneous mixed intensity lesions in the pituitary adenoma, compatible with pituitary apoplexy. The tumor was removed by the transsphenoidal approach 24 hours later, and histologic examination confirmed the diagnosis of pituitary apoplexy. Although pituitary apoplexy associated with bromocriptine is very rare, this case suggests a casual relationship is possible in some instances.
PRL-releasing peptide receptor (PrRPR) mRNA was expressed in pituitary adenomas but was not detected in patients treated with bromocriptine, a specific agonist of dopamine 2 (D2) receptor. Although medical treatment with bromocriptine is effective for patients with pituitary adenomas, little is known about the molecular mechanisms of gene regulation mediated by D2 receptors. The cloned human PrRPR gene spanned approximately 2.0 kb and contained two exons and one intron. Two functional polyadenylation signals located at 510 and 714 bp downstream from the stop codon. A primer extension analysis demonstrated two major transcriptional start sites at 139 and 140 bp upstream from the translational start site and an additional minor site at -161. The promoter region contained several putative binding sites for transcriptional factors including pituitary-specific transcription factor (Pit 1), activator protein 1 (AP-1), and specificity protein (Sp1), but no typical TATA or CAAT box. This promoter showed the strong activity in the pituitary-derived GH4C1 cells, and the region between -697 and -596 bp was responsible for the stimulation both by forskolin and overexpression of cAMP response element binding protein (CREB). These stimulations were significantly suppressed by incubation with bromocriptine in a dose- and time-dependent manner, and the mutant CREB (S133A) completely abolished the inhibitory events of bromocriptine. However, EMSA studies demonstrated that CREB did not bind to this region, to which an approximately 60-kDa protein was strongly bound, and that antibodies against CREB, c-Fos, and Sp1 did not supershift this complex. Furthermore, the amount of this unknown protein was apparently reduced by treatment with bromocriptine. A series of mutation analyses demonstrated that the specific sequence, 5'-cccacatcat-3', was required for both the binding to the 60-kDa protein and the repression by bromocriptine. Therefore, the transcriptional repression of the PrRPR gene by bromocriptine required CREB but was independent of direct binding of CREB to the gene and that the sequence -663 -- -672, 5'-cccacatcat-3', bound to the 60-kDa protein appeared to be critical for this event.
Achieving the optimal glucose level time in range (TIR), as recently proposed by the "International Consensus on Time in Range," is challenging. We retrospectively analyzed data from 192 patients, including 58 with type 1 diabetes, using the FreeStyle Libre Pro system. This device was used by physicians for continuous glucose monitoring (CGM) and for making therapeutic decisions based on unbiased data, as the patients were blinded to their blood glucose levels during monitoring. The desired 70% TIR among patients with type 2 diabetes corresponded to an HbA1c of 7.7%. Importantly, however, a 70% TIR for patients with type 1 diabetes corresponded to an HbA1c of 6.9%, which diverged markedly from the HbA1c of 7.9% that corresponded to the desired 4% time below range (TBR). Moreover, these dissociations were observed more in patients with type 1 diabetes with a higher % coefficient of variation (> 36%). Hence, while the TIR is strongly correlated with HbA1c, it is difficult to coordinate with the TBR in Japanese patients with type 1 diabetes. As these metrics (which are critical indicators in clinical practice) are rapidly gaining popularity globally, including in Japan, our data strongly support the cautious use of new CGM metrics such as TIR and TBR/time above range, and emphasize the importance of individualized treatment in achieving the optimal TIR and TBR, especially in patients with type 1 diabetes.
Biochemical mechanisms by which analogs of thyrotropin-releasing hormone (TRH) produce their potent neuropharmacological actions on the brain remain ill-defined. We tested effects of YM14673, a novel analog of TRH, on TRH receptors in rat brains in vitro. No significant binding of [3H]YM14673 to brain plasma membranes occurred. In contrast, preincubation of membranes with YM14673 caused dose-dependent decreases in TRH binding. This was not due to competition for TRH binding sites or existence of metabolites of YM14673. Preincubation with DN1417 (an another TRH analog), cyclo(His-Pro) or methionine-enkephalin did not affect the binding. Affections of YM14673 on TRH binding were observed when cerebral cortical membranes were studied; those were not seen in membranes prepared from hypothalamus, striatum, midbrain, hippocampus, or pons-medulla. The present data indicate that YM14673 exerts its characteristic neuro-pharmacological functions through interacting with TRH binding sites in the brain.
Intravascular large B-cell lymphoma (IVLBCL) is a rare subtype of diffuse large B-cell lymphoma. There have been only a limited number of reports regarding pituitary dysfunction associated with IVLBCL. We present a 71-year-old woman with hypopituitarism without any hypothalamic/pituitary abnormalities as assessed by magnetic resonance imaging. She presented with edema, abducens palsy, and elevated levels of lactate dehydrogenase and soluble interleukin-2 receptor. Provocative testing showed that the peaks of luteinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone and adrenocorticotropic hormone were evoked to normal levels by simultaneous administration of luteinizing hormone-releasing hormone, thyrotropin-releasing hormone and corticotropin-releasing hormone, but the responses of these four pituitary hormones showed a delayed pattern. She was diagnosed with IVLBCL with cerebrospinal invasion by pathological findings of the bone marrow, skin, and cerebrospinal fluid. She achieved hematological remission after immunochemotherapy. Pituitary function was also restored without hormonal replacement, and the improvement of the pituitary function was confirmed by dynamic testing. We reviewed the literature with respect to hypopituitarism associated with IVLBCL. There were less than 20 case reports and most of the patients died. Endocrinological course was described in only two cases, and both of them required hormonal supplementation. To our knowledge, this is the first case of hypopituitarism induced by IVLBCL that was successfully managed by immunochemotherapy alone. This case suggests that early diagnosis and treatment of IVLBCL might improve anterior pituitary function and enable patients to avoid hormone replacement therapy.