Although rotavirus is usually recognized as the most common etiology of diarrhea in young children, it can in fact cause severe diseases in organ transplantation recipients irrespective of pediatric or adult patients. This comprehensive literature analysis revealed 200 cases of rotavirus infection with 8 related deaths in the setting of organ transplantation been recorded. Based on published cohort studies, an average incidence of 3% (187 infections out of 6176 organ recipients) was estimated. Rotavirus infection often causes severe gastroenteritis complications and occasionally contributes to acute cellular rejection in these patients. Immunosuppressive agents, universally used after organ transplantation to prevent organ rejection, conceivably play an important role in such a severe pathogenesis. Interestingly, rotavirus can in turn affect the absorption and metabolism of particular immunosuppressive medications via several distinct mechanisms. Even though rotaviral enteritis is self-limiting in general, infected transplantation patients are usually treated with intensive care, rehydration and replacement of nutrition, as well as applying preventive strategies. This article aims to properly assess the clinical impact of rotavirus infection in the setting of organ transplantation and to disseminate the interactions among the virus, host and immunosuppressive medications.
IFN regulatory factor 1 (IRF1) is one of the most important IFN-stimulated genes (ISGs) in cellular antiviral immunity. Although hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide, how ISGs counteract HEV infection is largely unknown. This study was conducted to investigate the effect of IRF1 on HEV replication. Multiple cell lines were used in 2 models that harbor HEV. In different HEV cell culture systems, IRF1 effectively inhibited HEV replication. IRF1 did not trigger IFN production, and chromatin immunoprecipitation sequencing data analysis revealed that IRF1 bound to the promoter region of signal transducers and activators of transcription 1 (STAT1). Functional assay confirmed that IRF1 could drive the transcription of STAT1, resulting in elevation of total and phosphorylated STAT1 proteins and further activating the transcription of a panel of downstream antiviral ISGs. By pharmacological inhibitors and RNAi-mediated gene-silencing approaches, we revealed that antiviral function of IRF1 is dependent on the JAK-STAT cascade. Furthermore, induction of ISGs and the anti-HEV effect of IRF1 overlapped that of IFNα, but was potentiated by ribavirin. We demonstrated that IRF1 effectively inhibits HEV replication through the activation of the JAK-STAT pathway, and the subsequent transcription of antiviral ISGs, but independent of IFN production.-Xu, L., Zhou, X., Wang, W., Wang, Y., Yin, Y., van der Laan, L. J. W., Sprengers, D., Metselaar, H. J., Peppelenbosch, M. P., Pan, Q. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes.
Rotavirus infection has emerged as an important cause of complications in organ transplantation recipients and might play a role in the pathogenesis of inflammatory bowel disease (IBD). 6-Thioguanine (6-TG) has been widely used as an immunosuppressive drug for organ recipients and treatment of IBD in the clinic. This study aims to investigate the effects and mode-of-action of 6-TG on rotavirus replication. Human intestinal Caco2 cell line, 3D model of human primary intestinal organoids, laboratory rotavirus strain (SA11) and patient-derived rotavirus isolates were used. We have demonstrated that 6-TG significantly inhibits rotavirus replication in these intestinal epithelium models. Importantly, gene knockdown or knockout of Rac1, the cellular target of 6-TG, significantly inhibited rotavirus replication, indicating the supportive role of Rac1 for rotavirus infection. We have further demonstrated that 6-TG can effectively inhibit the active form of Rac1 (GTP-Rac1), which essentially mediates the anti-rotavirus effect of 6-TG. Consistently, ectopic over-expression of GTP-Rac1 facilitates but an inactive Rac1 (N17) or a specific Rac1 inhibitor (NSC23766) inhibits rotavirus replication. In conclusion, we have identified 6-TG as an effective inhibitor of rotavirus replication via the inhibition of Rac1 activation. Thus, for transplantation patients or IBD patients infected with rotavirus or at risk of rotavirus infection, the choice of 6-TG as a treatment appears rational.
Salmonella are Gram-negative rod-shaped facultative anaerobic bacteria that are comprised of over 2000 serovars. They cause gastroenteritis (salmonellosis) with headache, abdominal pain and diarrhea clinical symptoms. Salmonellosis brings a heavy burden for the public health in both developing and developed countries. Antibiotics are usually effective in treating the infected patients with severe gastroenteritis, although antibiotic resistance is on the rise. Understanding the molecular mechanisms of Salmonella infection is vital to combat the disease. In vitro immortalized 2-D cell lines, ex vivo tissues/organs and several animal models have been successfully utilized to study Salmonella infections. Although these infection models have contributed to uncovering the molecular virulence mechanisms, some intrinsic shortcomings have limited their wider applications. Notably, cell lines only contain a single cell type, which cannot reproduce some of the hallmarks of natural infections. While ex vivo tissues/organs alleviate some of these concerns, they are more difficult to maintain, in particular for long term experiments. In addition, nonhuman animal models are known to reflect only part of the human disease process. Enteroids and induced intestinal organoids are emerging as effective infection models due to their closeness in mimicking the infected tissues/organs. Induced intestinal organoids are derived from iPSCs and contain mesenchymal cells whereas enteroids are derive from intestinal stem cells and are comprised of epithelial cells only. Both enteroids and induced intestinal organoids mimic the villus and crypt domains comparable to the architectures of the in vivo intestine. We review here that enteroids and induced intestinal organoids are emerging as desired infection models to study bacterial-host interactions of Salmonella.
Abstract Vitamin A (VA) is an important nutrient for weaning piglets. It plays a significant role in the normal formation, development, and maintenance of epithelial cells. Previous studies have shown that VA supplements could improve the host’s intestinal barrier function. Therefore, we hypothesized that VA supplements can affect intestinal function in weaned piglets by regulating intestinal stem cells. Thirty-two 21-d-old weaned [(Yorkshire × Landrace) × Duroc] piglets with an average weight of 8.34 ± 0.13 kg were randomly divided into 4 treatment groups, with 1) 2 mg/kg (control), 2) 4 mg/kg, 3) 8 mg/kg, and 4) 16 mg/kg doses of VA, respectively. The experiment lasted for 14 d. Weaned piglets were given ad libitum access to food and water during the test. The ADG (linear, P = 0.020) and G:F (linear, P = 0.005) of the piglets were found to increase significantly from days 8 to 14. The Lgr5+ gene expression (P = 0.012) in the jejunum mucosa of the 16 mg/kg VA group was increased. The jejunum villus height (P = 0.027) and villi surface area (P = 0.035) were significantly increased in the 4 mg/kg VA treatment group. The crypt depth increased significantly in the 4 and 8 mg/kg VA treatment groups (quadratic, P = 0.043), and the ratios of villus height to crypt depth significantly increased in the 16 mg/kg VA group (quadratic, P = 0.015). The maltase (P = 0.032), sucrose (P = 0.041), and alkaline phosphatase activity (linear, P = 0.024) were significantly increased when further supplemented with 4 mg/kg VA. Slc2a2 mRNA abundance was significantly increased in the 2 mg/kg VA group (linear, P = 0.024). Moreover, the budding rates, buddings number per organoid, and Chromogranin A and Muc2 expression of piglet intestinal organoids were significantly reduced (P < 0.05) by VA and its metabolites (retinoic acid). Compared with the control group, the expression of Spp1 and Trop2 increased. These results indicated that VA may increase the stemness of intestinal stem cell in vitro. This study suggested that VA could affect growth performance and intestinal function by regulating intestinal stem cells in the jejunum of weaned piglets.
Abstract Nutritional studies are greatly hampered by a paucity of proper models. Previous studies on nutrition have employed conventional cell lines and animal models to gain a better understanding of the field. These models lack certain correlations with human physiological responses, which impede their applications in this field. Enteroids are cultured from intestinal stem cells and include enterocytes, enteroendocrine cells, goblet cells, Paneth cells, and stem cells, which mimic hallmarks of in vivo epithelium and support long‐term culture without genetic or physiological changes. Enteroids have been used as models to study the effects of diet and nutrients on intestinal growth and development, ion and nutrient transport, secretory and absorption functions, the intestinal barrier, and location‐specific functions of the intestine. In this review, the existing models for nutritional studies are discussed and the importance of enteroids as a new model for nutritional studies is highlighted. Taken together, it is suggested that enteroids can serve as a potential model system to be exploited in nutritional studies.
Although rotavirus infection is usually acute and self-limiting, it can cause chronic infection with severe diseases in immunocompromised patients, including organ transplantation recipients and cancer patients irrespective of pediatric or adult patients. Since no approved medication against rotavirus infection is available, this study screened a library of safe-in-man broad-spectrum antivirals. We identified gemcitabine, a widely used anti-cancer drug, as a potent inhibitor of rotavirus infection. We confirmed this effect in 2D cell cultures and 3D cultured human intestinal organoids with both laboratory-adapted rotavirus strains and five clinical isolates. Supplementation of UTP or uridine largely abolished the anti-rotavirus activity of gemcitabine, suggesting its function through inhibition of pyrimidine biosynthesis pathway. Our results support repositioning of gemcitabine for treating rotavirus infection, especially for infected cancer patients.