Abstract Proprotein convertase subtilisin/kexin type‐9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low‐density lipoprotein (LDL)‐cholesterol levels by binding to the LDL‐receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain‐of‐function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR‐dependent or ‐independent mechanisms. More recently, several clinical trials have confirmed that anti‐PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all‐cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR‐related proteins, cluster of differentiation family members, epithelial Na + channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid‐lowering therapy and disease prevention.
Hydrogen sulfide (H2S) exerts an anti‑atherosclerotic effect and decreases foam cell formation. Lipoprotein‑associated phospholipase A2 (Lp‑PLA2) is a key factor involved in foam cell formation. However, the association between H2S and Lp‑PLA2 expression levels with respect to foam cell formation has not yet been elucidated. The present study investigated whether H2S can affect foam cell formation and potential signalling pathways via regulation of the expression and activity of Lp‑PLA2. Using human monocytic THP‑1 cells as a model system, it was observed that oxidized low‑density lipoprotein (ox‑LDL) not only upregulates the expression level and activity of Lp‑PLA2, it also downregulates the expression level and activity of Cystathionine γ lyase. Exogenous supplementation of H2S decreased the expression and activity of Lp‑PLA2 induced by ox‑LDL. Moreover, ox‑LDL induced the expression level and activity of Lp‑PLA2 via activation of the p38MAPK signalling pathway. H2S blocked the expression levels and activity of Lp‑PLA2 induced by ox‑LDL via inhibition of the p38MAPK signalling pathway. Furthermore, H2S inhibited Lp‑PLA2 activity by blocking the p38MAPK signaling pathway and significantly decreased lipid accumulation in ox‑LDL‑induced macrophages, as detected by Oil Red O staining. The results of the present study indicated that H2S inhibited ox‑LDL‑induced Lp‑PLA2 expression levels and activity by blocking the p38MAPK signalling pathway, thereby improving foam cell formation. These findings may provide novel insights into the role of H2S intervention in the progression of atherosclerosis.
Hydrogen sulfide (H2S) is the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide. It is physiologically generated by cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase. H2S has been gaining increasing attention as an important endogenous signaling molecule because of its significant effects on the cardiovascular and nervous systems. Substantial evidence shows that H2S is involved in aging by inhibiting free-radical reactions, activating SIRT1, and probably interacting with the age-related gene Klotho. Moreover, H2S has been shown to have therapeutic potential in age-associated diseases. This article provides an overview of the physiological functions and effects of H2S in aging and age-associated diseases, and proposes the potential health and therapeutic benefits of H2S.
Abstract Diabetes mellitus (DM), a high incidence metabolic disease, is related to the impairment of male spermatogenic function. Spermidine (SPM), one of the biogenic amines, was identified from human seminal plasma and believed to have multiple pharmacological functions. However, there exists little evidence that reported SPM's effects on moderating diabetic male spermatogenic function. Thus, the objective of this study was to investigate the SPM's protective effects on testicular spermatogenic function in streptozotocin (STZ)-induced type 1 diabetic mice. Therefore, 40 mature male C57BL/6J mice male were divided into four main groups: the control group (n=10), the diabetic group (n=10), the 2.5 mg/kg SPM-treated diabetic group (n=10) and the 5 mg/kg SPM-treated diabetic group (n=10), which was given intraperitoneally for 8 weeks. The type 1 diabetic mice model was established by a single intraperitoneal injection of STZ 120 mg/kg. The results showed that, compare to the control group, the body and testis weight, as well the number of sperm were decreased, while the rate of sperm malformation was significantly increased in STZ-induced diabetic mice. Then the testicular morphology was observed, which showed that seminiferous tubule of testis were arranged in mess, the area and diameter of which was decreased, along with downregulated anti-apoptotic factor (Bcl-2) expression, and upregulated pro-apoptotic factor (Bax) expression in the testes. Furthermore, testicular genetic expression levels of Sertoli cells (SCs) markers (WT1, GATA4) and Vimentin detected that the pathological changes aggravated observably, such as the severity of tubule degeneration increased. Compared to the saline-treated DM mice, SPM treatment markedly improved testicular function, with an increment in the body and testis weight as well as sperm count. Pro-apoptotic factor (Bax) was down-regulated expression with the up-regulated expression of Bcl-2 and suppression of apoptosis in the testes. What’s more, expression of WT1, GATA4, Vimentin and the expressions of glycolytic rate-limiting enzyme genes (HK2, PKM2, LDHA) in diabetic testes were also upregulated by SPM supplement. The evidence derived from this study indicated that the SMP's positive effect on moderating spermatogenic disorder in T1DM mice's testis. This positive effect is delivered via promoting spermatogenic cell proliferation and participating in the glycolytic pathway's activation.
Doxorubicin (DOX) is an efficient drug used in cancer therapy that also produces reactive oxygen species (ROS) that induces severe cytotoxicity, which limits its clinical application. Hydrogen sulfide (H2S), a novel gasotransmitter, has been shown to exert cardioprotective effects. The present study aimed to determine whether exogenous H2S protects H9c2 cardiac cells against DOX-induced cytotoxicity and whether these protective effects are mediated through the PI3K/Akt/FoxO3a pathway. The H9c2 cardiac cells were exposed to 5 µM DOX for 24 h to establish a model of DOX-induced cardiotoxicity. The results showed that the treatment of H9c2 cardiac cells with sodium hydrosulfide (NaHS) for 30 min prior to DOX exposure markedly attenuated the phosphorylation of Akt and FoxO3a. Notably, pre-treatment of the H9c2 cells with NaHS significantly attenuated the nuclear localization of FoxO3a as well as the apoptosis of H9c2 cells induced by DOX. The treatment of H9c2 cells with N-acetyl-L-cysteine (NAC), a scavenger of ROS, prior to DOX exposure, also markedly increased the phosphorylation of Akt and FoxO3a which was inhibited by DOX alone. Furthermore, pre-treatment with LY294002, a selective inhibitor of PI3K/Akt, reversed the protective effect of H2S against DOX-induced injury of cardiomyocytes, as demonstrated by an increased number of apoptotic cells, a decrease in cell viability and the reduced phosphorylation of Akt and FoxO3a. These findings suggested that exogenous H2S attenuates DOX-induced cytotoxic effects in H9c2 cardiac cells through the PI3K/Akt/FoxO3a pathway.
Coronary heart disease (CHD) is closely related to hypercholesterolemia, and lowering serum cholesterol is currently the most important strategy in reducing CHD. In humans, the serum cholesterol level is determined mainly by three metabolic pathways, namely, dietary cholesterol intake, cholesterol synthesis, and cholesterol degradation in vivo. An intervention that targets the key molecules in the three pathways is an important strategy in lowering serum lipids. Statins inhibit 3-hydroxyl-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) to reduce low-density lipoprotein (LDL) by about 20% to 45%. However, up to 15% of patients cannot tolerate the potential side effects of high statin dosages, and several patients also still do not reach their optimal LDL goals after being treated with statins. Ezetimibe inhibits cholesterol absorption by targeting the Niemann–Pick C1-like 1 protein (NPC1L1), which is related to cholesterol absorption in the intestines. Ezetimibe lowers LDL by about 18% when used alone and by an additional 25% when combined with statin therapy. The proprotein convertase subtilisin/kexin type 9 (PCSK9) increases hepatic LDLR degradation, thereby reducing the liver’s ability to remove LDL, which can lead to hypercholesterolemia. Evolocumab, which is a PCSK9 monoclonal antibody, can reduce LDL from baseline by 53% to 56%. The three drugs exert lipid-lowering effects by regulating the three key pathways in lipid metabolism. Combining any with the two other drugs on the basis of statin treatment has improved the lipid-lowering effect. Whether the combination of the three musketeers will reduce the side effects of monotherapy and achieve the lipid-lowering effect should be studied further in the future.