Input-queued scheduling algorithms are designed to match input ports to output ports as many as possible.So,MSM and MWM,which are based on bipartite graph matching,become the criteria of various scheduling algorithms theoretically.Hungary algorithm is a classical one to solve bipartite graph matching problem.In this paper,Hungary algorithm is applied to the simulation of scheduling algorithms,which produces accurate simulation result.It is the theoretical foundation to do further research on router.
Measurement techniques often result in domain gaps among batches of cellular data from a specific modality. The effectiveness of cross-batch annotation methods is influenced by inductive bias, which refers to a set of assumptions that describe the behavior of model predictions. Different annotation methods possess distinct inductive biases, leading to varying degrees of generalizability and interpretability. Given that certain cell types exhibit unique functional patterns, we hypothesize that the inductive biases of cell annotation methods should align with these biological patterns to produce meaningful predictions. In this study, we propose KIDA, Knowledge-based Inductive bias and Domain Adaptation. The knowledge-based inductive bias constrains the prediction rules learned from the reference dataset, composed of multiple batches, to functional patterns relevant to biology, thereby enhancing the generalization of the model to unseen batches. Since the query dataset also contains gaps from multiple batches, KIDA's domain adaptation employs pseudo labels for self-knowledge distillation, effectively narrowing the distribution gap between model predictions and the query dataset. Benchmark experiments demonstrate that KIDA is capable of achieving accurate cross-batch cell type annotation. Knowledge-based inductive bias and domain adaptation can enhance the cell type annotation accuracy of deep learning models.
Abstract Neuropeptides (NPs) are a particular class of informative substances in the immune system and physiological regulation. They play a crucial role in regulating physiological functions in various biological growth and developmental stages. In addition, NPs are crucial for developing new drugs for the treatment of neurological diseases. With the development of molecular biology techniques, some data-driven tools have emerged to predict NPs. However, it is necessary to improve the predictive performance of these tools for NPs. In this study, we developed a deep learning model (NeuroPred-CLQ) based on the temporal convolutional network (TCN) and multi-head attention mechanism to identify NPs effectively and translate the internal relationships of peptide sequences into numerical features by the Word2vec algorithm. The experimental results show that NeuroPred-CLQ learns data information effectively, achieving 93.6% accuracy and 98.8% AUC on the independent test set. The model has better performance in identifying NPs than the state-of-the-art predictors. Visualization of features using t-distribution random neighbor embedding shows that the NeuroPred-CLQ can clearly distinguish the positive NPs from the negative ones. We believe the NeuroPred-CLQ can facilitate drug development and clinical trial studies to treat neurological disorders.
Due to the global outbreak of COVID-19 and its variants, antiviral peptides with anti-coronavirus activity (ACVPs) represent a promising new drug candidate for the treatment of coronavirus infection. At present, several computational tools have been developed to identify ACVPs, but the overall prediction performance is still not enough to meet the actual therapeutic application. In this study, we constructed an efficient and reliable prediction model PACVP (Prediction of Anti-CoronaVirus Peptides) for identifying ACVPs based on effective feature representation and a two-layer stacking learning framework. In the first layer, we use nine feature encoding methods with different feature representation angles to characterize the rich sequence information and fuse them into a feature matrix. Secondly, data normalization and unbalanced data processing are carried out. Next, 12 baseline models are constructed by combining three feature selection methods and four machine learning classification algorithms. In the second layer, we input the optimal probability features into the logistic regression algorithm (LR) to train the final model PACVP. The experiments show that PACVP achieves favorable prediction performance on independent test dataset, with ACC of 0.9208 and AUC of 0.9465. We hope that PACVP will become a useful method for identifying, annotating and characterizing novel ACVPs.
Heterogeneous feature spaces and technical noise hinder the cellular data integration and imputation. The high cost of obtaining matched data across modalities further restricts analysis. Thus, there's a critical need for deep learning approaches to effectively integrate and impute unpaired multi-modality single-cell data, enabling deeper insights into cellular behaviors. To address these issues, we introduce the Modal-Nexus Auto-Encoder (Monae). Leveraging regulatory relationships between modalities and employing contrastive learning within modality-specific auto-encoders, Monae enhances cell representations in the unified space. The integration capability of Monae furnishes it with modality-complementary cellular representations, enabling the generation of precise intra-modal and cross-modal imputation counts for extensive and complex downstream tasks. In addition, we develop Monae-E (Monae-Extension), a variant of Monae that can converge rapidly and support biological discoveries. Evaluations on various datasets have validated Monae and Monae-E's accuracy and robustness in multi-modality cellular data integration and imputation. Heterogeneous feature spaces and technical noise hinder the cellular data integration and further analysis. Here, authors report a Modal-Nexus Auto-Encoder (Monae) to effectively integrate unpaired multi-modality cellular data and generate imputation counts for downstream analysis.