A segment of DNA containing the L-glutamate oxidase (gox) gene from Streptomyces platensis NTU3304 was cloned. The entire nucleotide sequence of the protein-coding portion consisting of 2130 bp (710 codons, including AUG and UGA) of the cloned DNA fragment was determined. The gox gene contained only one open reading frame (ORF) which coded for a 78-kDa polypeptide, the precursor of active extracellular Gox. Mature Gox is composed of three subunits, designated as α, β, and γ, with molecular masses of 39, 19, and 16 kDa, respectively. Analyses of the N-terminal amino acid sequences of the subunits revealed that the order of subunits in the precursor polypeptide encoded by the ORF, from N-terminus to C-terminus, is αγβ. The presence of the flavin adenine dinucleotide (FAD)-binding motif place Gox as a member of the flavoenzyme family. Furthermore, a negative effect of glucose on the biosynthesis of Gox was observed when it was used as carbon source.Key words: L-glutamate oxidase, gox gene, signal peptide, DNA sequence, flavoenzyme, pIJ702 vector.
Regulation of intracellular protein stability by the ubiquitin-dependent proteasome system plays a crucial role in cell function. HO-1 (haem oxygenase) is a stress response protein, which confers cytoprotection against oxidative injury and provides a vital function in maintaining tissue homoeostasis. In the present study, we found a novel action of proteasome inhibitors MG132 and MG262 on HO-1 induction, and characterized the underlying mechanisms. MG132 (≥0.1 µM) treatment resulted in a marked time- and concentration-dependent induction of the steady-state level of HO-1 mRNA in RAW264.7 macrophages, followed by a corresponding increase in HO-1 protein. Actinomycin D and cycloheximide inhibited MG132-responsive HO-1 protein expression, indicating a requirement for transcription and de novo protein synthesis. The involvement of signal pathways in MG132-induced HO-1 gene expression was examined using chemical inhibitors. Antioxidant N-acetylcysteine and SB203580, an antioxidant and inhibitor of p38 MAPK (mitogen-activated protein kinase), abolished MG132-inducible HO-1 expression. Furthermore, MG132 activated the p38 MAPK pathway. The half-life of HO-1 protein was prolonged by MG132, indicating that the upregulation of HO-1 by proteasome inhibitor is partially attributable to the inhibition of protein degradation. MG132 can ablate IκBα degradation and NF-κB (nuclear factor κB) activation induced by lipopolysaccharide, similar to the effect of another NF-κB inhibitor pyrrolidine dithiocarbamate. We found HO-1 upregulation by MG132 and pyrrolidine dithiocarbamate is unrelated to their inhibition of NF-κB, since leptomycin B, another NF-κB inhibitor, did not elicit similar induction of HO-1. Taken together, we found a novel effect of proteasome inhibitor on induction of HO-1 expression. This action is ascribed to the activation of the p38 MAPK pathway, but is not dependent on NF-κB inhibition.
Urothelial carcinoma (UC) is the most common type of genitourinary cancer with high incidence and mortality rates in men. In this study, we used the BFTC-905 and T24 bladder cancer cell lines as in vitro models to investigate the pathways involved in flaccidoxide-induced apoptosis.We utilized MTT assays, colony assays, wound-healing assays and fluorescence with TUNEL to confirm the cytotoxicity of flaccidoxide in bladder cancer cell lines. Potential proliferative and apoptotic molecular mechanisms were evaluated by western blotting.The expression of anti-apoptotic proteins Bcl-2 and phosphorylated Bad (p-Bad) was attenuated with an increasing flaccidoxide concentration, while the expression of proapoptotic proteins Bax, Bad, cleaved caspase-3, cleaved caspase-9 and cleaved PARP-1 was found increased. Additionally, phosphorylation of phosphoinositide 3-kinases (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in the PI3K/AKT/mTOR pathway was reduced, leading to a reduction in the phosphorylation of downstream 70-kDa ribosomal protein S6 kinase 1 (p70S6K), S6 ribosomal protein (S6) and eukaryotic translation initiation factor 4B (eIF4B). However, eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) protein phosphorylation was increased due to attenuation of the upstream phosphorylation of mTOR protein.Flaccidoxide-induced apoptosis in BFTC-905 and T24 cells is mediated by mitochondrial dysfunction and down-regulation the PI3K/AKT/mTOR/p70S6K signaling pathway.
Metastasis of cancer is the cause of the majority of cancer deaths. Active compound flaccidoxide-13-acetate, isolated from the soft coral Cladiella kashmani, has been found to exhibit anti-tumor activity. In this study, Boyden chamber analysis, Western blotting and gelatin zymography assays indicated that flaccidoxide-13-acetate exerted inhibitory effects on the migration and invasion of RT4 and T24 human bladder cancer cells. The results demonstrated that flaccidoxide-13-acetate, in a concentration-dependent manner, reduced the levels of matrix metalloproteinase-2 (MMP-2), MMP-9, urokinase-type plasminogen activator receptor (uPAR), focal adhesion kinase (FAK), phosphatidylinositide-3 kinases (PI3K), p-PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, Ras homolog gene family, member A (Rho A), Ras, mitogen-activated protein kinase kinase 7 (MKK7) and mitogen-activated protein kinase kinase kinase 3 (MEKK3), and increased the expressions of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 in RT4 and T24 cells. This study revealed that flaccidoxide-13-acetate suppressed cell migration and invasion by reducing the expressions of MMP-2 and MMP-9, regulated by the FAK/PI3K/AKT/mTOR pathway. In conclusion, our study was the first to demonstrate that flaccidoxide-13-acetate could be a potent medical agent for use in controlling the migration and invasion of bladder cancer.
Nobiletin (NOB) is a polymethoxylated flavonoid isolated from citrus fruit peel that has been shown to possess anti-tumor, antithrombotic, antifungal, anti-inflammatory and anti-atherosclerotic activities. The main purpose of this study was to explore the potential of using NOB to induce apoptosis in human bladder cancer cells and study the underlying mechanism. Using an MTT assay, agarose gel electrophoresis, a wound-healing assay, flow cytometry, and western blot analysis, this study investigated the signaling pathways involved in NOB-induced apoptosis in BFTC human bladder cancer cells. Our results showed that NOB at concentrations of 60, 80, and 100 μM inhibited cell growth by 42%, 62%, and 80%, respectively. Cells treated with 60 μM NOB demonstrated increased DNA fragmentation, and flow cytometry analysis confirmed that the treatment caused late apoptotic cell death. Western blot analysis showed that mitochondrial dysfunction occurred in NOB-treated BFTC cells, leading to cytochrome C release into cytosol, activation of pro-apoptotic proteins (caspase-3, caspase-9, Bad, and Bax), and inhibition of anti-apoptotic proteins (Mcl-1, Bcl-xl, and Bcl-2). NOB-induced apoptosis was also mediated by regulating endoplasmic reticulum stress via the PERK/elF2α/ATF4/CHOP pathway, and downregulating the PI3K/AKT/mTOR pathway. Our results suggested that the cytotoxic and apoptotic effects of NOB on bladder cancer cells are associated with endoplasmic reticulum stress and mitochondrial dysfunction.
A segment of DNA containing the L-glutamate oxidase (gox) gene from Streptomyces platensis NTU3304 was cloned. The entire nucleotide sequence of the protein-coding portion consisting of 2130 bp (710 codons, including AUG and UGA) of the cloned DNA fragment was determined. The gox gene contained only one open reading frame (ORF) which coded for a 78-kDa polypeptide, the precursor of active extracellular Gox. Mature Gox is composed of three subunits, designated as alpha, beta, and gamma, with molecular masses of 39, 19, and 16 kDa, respectively. Analyses of the N-terminal amino acid sequences of the subunits revealed that the order of subunits in the precursor polypeptide encoded by the ORF, from N-terminus to C-terminus, is alpha-gamma-beta. The presence of the flavin adenine dinucleotide (FAD)-binding motif place Gox as a member of the flavoenzyme family. Furthermore, a negative effect of glucose on the biosynthesis of Gox was observed when it was used as carbon source.
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and there is currently a lack of effective treatment options to control the metastasis. This study was performed to examine the mechanisms of the migration and invasion characteristics of HCC, with the aim of reducing metastasis by inhibiting cancer cell migration and invasion. In this study, we used Stellettin B, an active compound isolated from Stelletta sponges, as the experimental drug and evaluated its inhibition effects on cell migration and invasion in human hepatoma cells (HA22T and HepG2). MTT assay, gelatin zymography, and western blotting were employed. The results showed that Stellettin B significantly inhibited the protein expressions of MMP-2, MMP-9, and uPA, while upregulating the protein expressions of TIMP-1 and TIMP-2. The expressions of p-FAK, p-PI3K, p-AKT, p-mTOR, and MAPKs (p-JNK, p-JUN, p-MAPKp38, and p-ERK) were decreased with increasing concentrations of Stellettin B. Our results suggest that Stellettin B-dependent downregulation of MMP-2 and MMP-9 activities could be mediated by FAK/PI3K/AKT/mTOR and MAPKs signaling pathways in HA22T and HepG2 cells, preventing HCC invasion and migration.
Context Momordica charantia L. (Cucurbitaceae), known as bitter melon, is an edible fruit cultivated in the tropics. In this study, an active compound, 5β,19-epoxycucurbita-6,23(E)-diene-3β,19(R),25-triol (ECDT), isolated from M. charantia was investigated in regard to its cytotoxic effect on human hepatocellular carcinoma (HCC) cells.Objective To examine the mechanisms of ECDT-induced apoptosis in HCC cells.Materials and methods The inhibitive activity of ECDT on HA22T HCC cells was examined by MTT assay, colony formation assay, wound healing assay, TUNEL/DAPI staining, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and JC-1 dye. HA22T cells were treated with ECDT (5, 10, 15, 20 and 25 μM) for 24 h, and the molecular mechanism of cells apoptosis was examined by Western blot. Cells treated with vehicle DMSO were used as the negative control.Results ECDT inhibited the cell proliferation of HA22T cells in a dose-dependent manner. Flow cytometry showed that ECDT treatment at 10–20 μM increased early apoptosis by 10–14% and late apoptosis by 2–5%. Western blot revealed that ECDT treatment activated the mitochondrial-dependent apoptotic pathway, and ECDT-induced apoptosis was mediated by the caspase signalling pathway and activation of JNK and p38MAPK. Pre-treatment of cells with MAPK inhibitors (SB203580 or SP600125) reversed the ECDT-induced cell death, which further supported the involvement of the p38MAPK and JNK pathways.Discussion and conclusions Our results indicated that ECDT can induce apoptosis through the p38MAPK and JNK pathways in HA22T cells. The findings suggested that ECDT has a valuable anticancer property with the potential to be developed as a new chemotherapeutic agent for the treatment of HCC.
The primary reason for cancer-related fatalities is metastasis. The compound 4-carbomethoxyl-10-epigyrosanoldie E, derived from the Sinularia sandensis soft coral species grown in cultures, exhibits properties that counteract inflammation. Moreover, it has been observed to trigger both apoptosis and autophagy within cancerous cells. This research focuses on examining the inhibitory impact of 4-carbomethoxyl-10-epigyrosanoldie E on the migration and invasion processes in Cal-27 and Ca9-22 oral cancer cell lines. To assess how this compound affects cell migration and invasion, the Boyden chamber assay was employed. Furthermore, Western blot analysis was utilized to explore the underlying molecular mechanisms. In a dose-dependent manner, 4-carbomethoxyl-10-epigyrosanoldie E notably decreased the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9, along with urokinase-type plasminogen activator (uPA), in both Cal-27 and Ca9-22 cell lines. Conversely, it elevated the concentrations of tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2. In addition, the treatment with this compound led to the inhibition of phosphorylation in extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). It also curtailed the expression of several key proteins including focal adhesion kinase (FAK), protein kinase C (PKC), growth factor receptor-bound protein 2 (GRB2), Rac, Ras, Rho A, mitogen-activated protein kinase kinase kinase 3 (MEKK3), and mitogen-activated protein kinase kinase 7 (MKK7). Furthermore, the expression levels of IQ-domain GTPase-activating protein 1 (IQGAP1) and zonula occludens-1 (ZO-1) were significantly reduced by the compound. The ability of 4-carbomethoxyl-10-epigyrosanoldie E to inhibit the migration and invasion of Cal-27 and Ca9-22 oral cancer cells was observed to be dose dependent. This inhibitory effect is primarily attributed to the suppression of MMP-2 and MMP-9 expression, as well as the downregulation of the mitogen-activated protein kinase (MAPK) signaling pathway.