<div>Abstract<p>Protease-activated receptor 1 (PAR1) is a G protein–coupled receptor that is not expressed in normal breast epithelia but is up-regulated in invasive breast carcinomas. In the present study, we found that matrix metalloprotease-1 (MMP-1) robustly activates the PAR1-Akt survival pathway in breast carcinoma cells. This process is blocked by a cell-penetrating lipopeptide “pepducin,” P1pal-7, which is a potent inhibitor of cell viability in breast carcinoma cells expressing PAR1. Both a MMP-1 inhibitor and P1pal-7 significantly promote apoptosis in breast tumor xenografts and inhibit metastasis to the lungs by up to 88%. Dual therapy with P1pal-7 and Taxotere inhibits the growth of MDA-MB-231 xenografts by 95%. Consistently, biochemical analysis of xenograft tumors treated with P1pal-7 or MMP-1 inhibitor showed attenuated Akt activity. Ectopic expression of constitutively active Akt rescues breast cancer cells from the synergistic cytotoxicity of P1pal-7 and Taxotere, suggesting that Akt is a critical component of PAR1-dependent cancer cell viability. Together, these findings indicate that blockade of MMP1-PAR1 signaling may provide a benefit beyond treatment with Taxotere alone in advanced, metastatic breast cancer. [Cancer Res 2009;69(15):6223–31]</p></div>
While inhibitors of BCL-2 family proteins (BH3 mimetics) have shown promise as anti-cancer agents, the various dependencies or co-dependencies of diverse cancers on BCL-2 genes remain poorly understood. Here we develop a drug screening approach to define the sensitivity of cancer cells from ten tissue types to all possible combinations of selective BCL-2, BCL-XL, and MCL-1 inhibitors and discover that most cell lines depend on at least one combination for survival. We demonstrate that expression levels of BCL-2 genes predict single mimetic sensitivity, whereas EMT status predicts synergistic dependence on BCL-XL+MCL-1. Lastly, we use a CRISPR/Cas9 screen to discover that BFL-1 and BCL-w promote resistance to all tested combinations of BCL-2, BCL-XL, and MCL-1 inhibitors. Together, these results provide a roadmap for rationally targeting BCL-2 family dependencies in diverse human cancers and motivate the development of selective BFL-1 and BCL-w inhibitors to overcome intrinsic resistance to BH3 mimetics.
Supplementary Figures 1-6 from Identification of a Metalloprotease-Chemokine Signaling System in the Ovarian Cancer Microenvironment: Implications for Antiangiogenic Therapy
<div>Abstract<p>Gene chip and proteomic analyses of tumors and stromal tissue has led to the identification of dozens of candidate tumor and host components potentially involved in tumor-stromal interactions, angiogenesis, and progression of invasive disease. In particular, matrix metalloproteases (MMP) have emerged as important biomarkers and prognostic factors for invasive and metastatic cancers. From an initial screen of benign versus malignant patient fluids, we delineated a metalloprotease cascade comprising MMP-14, MMP-9, and MMP-1 that culminates in activation of PAR1, a G protein-coupled protease-activated receptor up-regulated in diverse cancers. In xenograft models of advanced peritoneal ovarian cancer, PAR1-dependent angiogenesis, ascites formation, and metastasis were effectively inhibited by i.p. administration of cell-penetrating pepducins based on the intracellular loops of PAR1. These data provide an <i>in vivo</i> proof-of-concept that targeting the metalloprotease-PAR1 signaling system may be a novel therapeutic approach in the treatment of ovarian cancer. [Mol Cancer Ther 2008;7(9):2746–57]</p></div>
Supplementary Figure 3 from Blockade of PAR1 Signaling with Cell-Penetrating Pepducins Inhibits Akt Survival Pathways in Breast Cancer Cells and Suppresses Tumor Survival and Metastasis