We report a facile approach for producing reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire (NW) networks. The wavy configuration of Ag NWs is obtained by floating the NW networks on the surface of water, followed by compression. Stretchable antennas are prepared by transferring the compressed NW networks onto elastomeric substrates. The resulting antennas show excellent performance under mechanical deformation due to the wavy configuration, which allows the release of stress applied to the NWs and an increase in the contact area between NWs. The antennas formed from the wavy NW networks exhibit a smaller return loss and a higher radiation efficiency when strained than the antennas formed from the straight NW networks, as well as an improved stability in cyclic deformation tests. Moreover, the wavy NW antennas require a relatively small quantity of NWs, which leads to low production costs and provides an optical transparency. These results demonstrate the potential of these wavy Ag NW antennas in applications of wireless communications for wearable systems.
To investigate the clinical significance of corneal biomechanical properties assessed using an ocular response analyser in patients with progressing normal-tension glaucoma (NTG).
Methods
In this retrospective study, we included 82 eyes of 82 NTG patients who had been receiving topical anti-glaucoma medications. Patients were allocated to two groups based on the mean value of corneal hysteresis (CH) and the status of progression. The assessment of progression was based on the trend analysis using mean deviation slope. Uni- and multivariable logistic analyses were constructed to identify factors associated with increased odds of progression, including CH, central corneal thickness (CCT), and retinal nerve fibre layer (RNFL) thickness.
Results
Forty-six eyes (56.1%) reached the progression criteria. Eyes with progression had lower CCT (530.2±38.6 vs 549.4±38.3 μm, p=0.03), thinner average RNFL thickness (70.6±16.1 vs 82.8±17.4 μm, p<0.01), lower CH (9.4±1.3 vs 10.8±1.4 mm Hg, p<0.01), and lower corneal resistance factor (9.3±1.3 vs 10.4±1.8 mm Hg, p<0.01) than eyes without progression. CH and CCT were significantly correlated (r=0.44, p<0.01). Upon multivariable analysis, CH (β (B)=0.32 per mm Hg lower, p<0.01) and average RNFL thickness (β=0.96 per μm lower, p=0.04) remained statistically significant.
Conclusions
Corneal biomechanical properties are correlated and associated with the progression of visual field damage in NTG patients. These findings suggest that CH can be used as one of the prognostic factors for progression, independent of corneal thickness or intraocular pressure.
Diffuse neurofibroma presents as a diffuse overgrowth of subcutaneous tissue, and usually involves the face, scalp, neck, or chest, but rarely occurs in the back. The management of large soft tissue defects after wide resection of a diffuse neurofibroma is a major surgical challenge. We report the case of a diffuse neurofibroma of the back that required reconstruction after wide resection of the tumour using an expanded myocutaneous advancement flap and a tissue expander. Tissue expansion is essentially a simple technique for expanding available normal skin, and it provides optimally matched skin in terms of colour, texture, hair-bearing qualities, and sensation.