Subcellular localization is crucial for understanding the functions and regulatory mechanisms of biomolecules. Long non-coding RNAs (lncRNAs) have diverse roles in cellular processes, and their localization within specific subcellular compartments provides insights into their biological functions and implications in health and disease. The nucleolus and nucleoplasm are key hubs for RNA metabolism and cellular regulation. We developed a model, LncDNN, for identifying the localization of lncRNAs in the nucleolus and nucleoplasm. LncDNN uses three different encoding schemes and employs Shapley Additive Explanations for feature analysis and selection. The results show that LncDNN is more accurate than other models. Additionally, an interpretable analysis of the features influencing the model was conducted. LncDNN is applicable for identifying the localization of lncRNA in the nucleolus and nucleoplasm, aiding in the understanding and in-depth study of related biological processes and functions.
Subcellular localization is crucial to the study of virus and diseases. Specifically, research on protein subcellular localization can help identify clues between virus and host cells that can aid in the design of targeted drugs. Research on RNA subcellular localization is significant for human diseases (such as Alzheimer's disease, colon cancer, etc.). To date, only reviews addressing subcellular localization of proteins have been published, which are outdated for reference, and reviews of RNA subcellular localization are not comprehensive. Therefore, we collated (the most up-to-date) literature on protein and RNA subcellular localization to help researchers understand changes in the field of protein and RNA subcellular localization. Extensive and complete methods for constructing subcellular localization models have also been summarized, which can help readers understand the changes in application of biotechnology and computer science in subcellular localization research and explore how to use biological data to construct improved subcellular localization models. This paper is the first review to cover both protein subcellular localization and RNA subcellular localization. We urge researchers from biology and computational biology to jointly pay attention to transformation patterns, interrelationships, differences, and causality of protein subcellular localization and RNA subcellular localization. Subcellular localization is crucial to the study of virus and diseases. Specifically, research on protein subcellular localization can help identify clues between virus and host cells that can aid in the design of targeted drugs. Research on RNA subcellular localization is significant for human diseases (such as Alzheimer's disease, colon cancer, etc.). To date, only reviews addressing subcellular localization of proteins have been published, which are outdated for reference, and reviews of RNA subcellular localization are not comprehensive. Therefore, we collated (the most up-to-date) literature on protein and RNA subcellular localization to help researchers understand changes in the field of protein and RNA subcellular localization. Extensive and complete methods for constructing subcellular localization models have also been summarized, which can help readers understand the changes in application of biotechnology and computer science in subcellular localization research and explore how to use biological data to construct improved subcellular localization models. This paper is the first review to cover both protein subcellular localization and RNA subcellular localization. We urge researchers from biology and computational biology to jointly pay attention to transformation patterns, interrelationships, differences, and causality of protein subcellular localization and RNA subcellular localization.