Using microarray and sequencing platforms, a large number of copy number variations (CNVs) have been identified in humans. In practice, because our human genome is a diploid, these platforms are limited to or more accurate for detecting total copy numbers rather than chromosome-specific copy numbers at each of the two homologous chromosomes. Nevertheless, the analysis of linkage disequilibrium (LD) between CNVs and SNPs indicates that distinct copy numbers often sit on their own background haplotypes. We propose new computational models for inferring chromosome-specific copy numbers by distinguishing background haplotypes of each copy number. The formulated problems are shown to be NP-hard and approximation/heuristic algorithms are developed. Simulation indicates that our method is accurate and outperforms the existing approach. By testing the program in 60 parent-offspring trios, the inferred chromosome-specific copy numbers are highly consistent with the law of Mendelian inheritance. The distributions of copy numbers at chromosomal level are provided for 270 individuals in three HapMap panels. The estimation of chromosome-specific copy numbers using microarray or sequencing platforms was often confounded by a number of factors. This study showed that the integration of background haplotypes is able to improve the accuracies of copy number estimation at chromosome level, especially for the CNVs having strong LD with SNPs in proximity.
Key innovations have facilitated novel niche utilization, such as the movement of the algal predecessors of land plants into terrestrial habitats where drastic fluctuations in light intensity, ultraviolet radiation and water limitation required a number of adaptations. The NDH (NADH dehydrogenase-like) complex of Viridiplantae plastids participates in adapting the photosynthetic response to environmental stress, suggesting its involvement in the transition to terrestrial habitats. Although relatively rare, the loss or pseudogenization of plastid NDH genes is widely distributed across diverse lineages of photoautotrophic seed plants and mutants/transgenics lacking NDH function demonstrate little difference from wild type under non-stressed conditions. This study analyzes large transcriptomic and genomic datasets to evaluate the persistence and loss of NDH expression across plants. Nuclear expression profiles showed accretion of the NDH gene complement at key transitions in land plant evolution, such as the transition to land and at the base of the angiosperm lineage. While detection of transcripts for a selection of non-NDH, photosynthesis related proteins was independent of the state of NDH, coordinate, lineage-specific loss of plastid NDH genes and expression of nuclear-encoded NDH subunits was documented in Pinaceae, gnetophytes, Orchidaceae and Geraniales confirming the independent and complete loss of NDH in these diverse seed plant taxa. The broad phylogenetic distribution of NDH loss and the subtle phenotypes of mutants suggest that the NDH complex is of limited biological significance in contemporary plants. While NDH activity appears dispensable under favorable conditions, there were likely sufficiently frequent episodes of abiotic stress affecting terrestrial habitats to allow the retention of NDH activity. These findings reveal genetic factors influencing plant/environment interactions in a changing climate through 450 million years of land plant evolution.
Shewanella algae has been recognized as an emerging human pathogen. However, not much is known about the mechanism of its pathogenesis and its adaptation to a special niche such as the hepatobiliary tract. In this study, we isolated the S. algae ACCC strain from human bile and performed whole genome sequencing. S. algae ACCC consists of a circular 4,743,354-bp chromosome with a GC content of 53.08%, within 4080 protein coding sequences. The genome of strain ACCC contains a number of candidate genes which have been reported to be associated with bile adaption, including htpB, exbBD, wecA, galU, adeFGH and phoPQ regulon. Our results highlight the association of S. algae with a rare disease profile. Further studies are needed to shed light on the evolution of pathogenesis and the niche adaptation of S. algae.
This paper studies haplotype inference by maximum parsimony using population data. We define the optimal haplotype inference (OHI) problem as given a set of genotypes and a set of related haplotypes, find a minimum subset of haplotypes that can resolve all the genotypes. We prove that OHI is NP-hard and can be formulated as an integer quadratic programming (IQP) problem. To solve the IQP problem, we propose an iterative semidefinite programming-based approximation algorithm, (called SDPHapInfer). We show that this algorithm finds a solution within a factor of O(log n) of the optimal solution, where n is the number of genotypes. This algorithm has been implemented and tested on a variety of simulated and biological data. In comparison with three other methods, (1) HAPAR, which was implemented based on the branching and bound algorithm, (2) HAPLOTYPER, which was implemented based on the expectation-maximization algorithm, and (3) PHASE, which combined the Gibbs sampling algorithm with an approximate coalescent prior, the experimental results indicate that SDPHapInfer and HAPLOTYPER have similar error rates. In addition, the results generated by PHASE have lower error rates on some data but higher error rates on others. The error rates of HAPAR are higher than the others on biological data. In terms of efficiency, SDPHapInfer, HAPLOTYPER, and PHASE output a solution in a stable and consistent way, and they run much faster than HAPAR when the number of genotypes becomes large.
Background/Aim: Identifying pathogens with culture-negative pyogenic spondylitis is difficult. Shotgun metagenomic sequencing is an unbiased and culture-free approach in the diagnosis of infectious diseases. There are, however, a variety of contaminating factors that can confound the precision of metagenomic sequencing. Case Report: In a 65-year-old man suffering from culture-negative L3-5 spondylitis, metagenomics was applied to facilitate the diagnosis. The patient underwent percutaneous endoscopic lumbar discectomy. We applied metagenomic sequencing with a robust contamination-free protocol to the bone biopsy. By comparing the abundance for each taxon between the replicates and negative controls, we reliably identified Cutibacterium modestum as having a statistically higher abundance in all replicates. The patient's antibiotic therapy was switched to penicillin and doxycycline based upon the resistome analysis; the patient fully recovered. Conclusion: This application of next-generation sequencing provides a new perspective in the clinical approach to spinal osteomyelitis and illustrates the potential of this technique in rapid etiological diagnosis.
Abstract It is reported that long-term use of estrogen could increase the risk of ovarian cancer. However, the role of estrogen in immunoevasion is not fully explored. We have previously demonstrated that estrogen-mediated upregulation of E2F6, and, c-Kit, by epigenetic silencing of miR-193a, and a competing endogenous (ceRNA) mechanism. In this study, we found that PBX1, a transcriptional activator of the immunosuppressive cytokine, IL-10, is also a target of miR-193a. Importantly, overexpression of the E2F6 3’UTR upregulates both E2F6 and, PBX1, as well as IL10 in ovarian cancer cell lines, suggesting that ceRNA mechanism exists between E2F6 and PBX1. These phenomena are further supported by our stochastic simulation of the estrogen-mediated E2F6 ceRNA network on the distribution of E2F6 and PBX1 mRNA in cancer cells, which is consistent with the TCGA ovarian cancer RNA-Seq dataset. Importantly, monocyte-derived dendritic cell activation of T-cell function was inhibited by pretreatment of conditioned media derived from ovarian cancer cells overexpressing E2F6 3’UTR; such inhibition was rescueable by an anti-IL-10 antibody. Clinically, IL10 level was higher in ovarian cancer patients with higher E2F6 and PBX1, and in ovarian cancer cell lines overexpressed with E2F6 3’UTR. Taken together, these results showed that E2F6 could suppress anti-tumor immune response of dendritic cell, E2F6 ceRNA network. Epigenetic intervention in restoring the expression of miR-193a may be able to enhance anti-tumor immune response against ovarian cancer. Citation Format: Michael W.Y. Chan, Yin-Chen Chen, Ching-Wen Lin, Frank Cheng, Ching-Cher Sanders Yan, Chao-Ping Hsu, Yu-Min Chuang, Jie-Ting Low, Xiaojing Ma, Yao-Ting Huang, Chia-Bin Chang, Chin Li, Hung-Cheng Lai, Shu-Fen Wu, Shih-Hsun Hung, Je-Chiang Tsai. A E2F6 ceRNA network suppresses dendritic cell function, via PBX1/IL-10 signaling, in ovarian cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 97.
Comparative transcriptomics studies in hominoids are difficult because of lack of EST information in the great apes. Nevertheless, processed pseudogenes (PPGs), which are reverse-transcribed ancient transcripts present in the current genome, can be regarded as a virtual transcript resource that may compensate for the paucity of ESTs in non-human hominoids. Here we show that chimpanzee PPGs can be applied to identification of novel human exons/alternatively spliced variants (ASVs) and inference of the ancestral hominoid transcriptome and chimpanzee exon loss events. We develop a method for comparatively extracting novel transcripts from PPGs (designated “CENTP”) and identify 643 novel human exons/ASVs. RT-PCR-sequencing experiments confirmed >50% of the tested exons/ASVs, supporting the effectiveness of the CENTP pipeline. With reference to the ancestral transcriptome inferred by CENTP, 47 chimpanzee exon loss events are identified. Furthermore, by combining out-group and PPG information, we identify 20 chimpanzee-specific exon loss and 10 human-specific exon gain events. We also demonstrate that the ancestral transcriptome and exon loss/gain events inferred based on comparisons of current transcripts may be incomplete (or occasionally inappropriate) because ancestral transcripts may not be represented in the ESTs of existing species. Finally, functional analysis reveals that the novel exons identified based on chimpanzee transcripts are significantly enriched in genes related to translation regulatory activity and viral life cycle, suggesting different expression levels of the associated transcripts, and thus divergent splicing isoform composition between human and chimpanzee in these functional categories.
Shewanella algae is a zoonotic pathogen that poses a serious health threat to immunocompromised hosts. Treatment of S. algae infections is challenging due to the pathogen's intrinsic resistance to a variety of β-lactam antibiotics. Therapeutic options have become further limited by the emergence of quinolone-resistant strains. Currently, there are few studies concerning the genetic and molecular mechanisms underlying acquired quinolones resistance in S. algae. qnrA was once proposed as the candidate gene related to quinolones resistance in S. algae. However, recent studies demonstrated qnrA are highly conservative and does not confer resistance to quinolones in S. algae.A total of 27 non-duplicated isolates of S. algae strains were examined. MICs of ciprofloxacin were determined using Vitek 2. Whole genome sequencing was performed using MiSeq platform. Comprehensive Antibiotic Resistance Database and ResFinder were used for annotation of quinolones resistance genes. Multiple sequence alignment by EMBOSS Clustal Omega were used to identified mutation in quinolone resistance-determining regions. To investigation of the alteration of protein structure induced by mutation, in silico molecular docking studies was conducted using Accryl Discovery studio visualizer.All S. algae harbored the quinolone-resistance associated genes (qnrA, gyrA, gyrB, parC, and parE) regardless its resistance to ciprofloxacin. Comparison of these genomes identified a nonsynonymous mutation (S83V) in chromosome-encoded gyrase subunits (GyrA) in quinolone-resistant strain. We found this mutation disrupts the water-metal ion bridge, reduces the affinity of the quinolone-enzyme complex for the metal ions and therefore decrease the capability of quinolones to stabilize cleavage complexes.The study provides insight into the quinolone resistance mechanisms in S. algae, which would be helpful for the evolution of antibiotic resistance in this bacterium.
Stenotrophomonas acidaminiphila is an aerobic, glucose non-fermentative, Gram-negative bacterium that been isolated from various environmental sources, particularly aquatic ecosystems. Although resistance to multiple antimicrobial agents has been reported in S. acidaminiphila, the mechanisms are largely unknown. Here, for the first time, we report the complete genome and antimicrobial resistome analysis of a clinical isolate S. acidaminiphila SUNEO which is resistant to sulfamethoxazole. Comparative analysis among closely related strains identified common and strain-specific genes. In particular, comparison with a sulfamethoxazole-sensitive strain identified a mutation within the sulfonamide-binding site of folP in SUNEO, which may reduce the binding affinity of sulfamethoxazole. Selection pressure analysis indicated folP in SUNEO is under purifying selection, which may be owing to long-term administration of sulfonamide against Stenotrophomonas.