Based on the hydrology and sediment data, an artificial neural network model which has been applied maturely and widely in all kinds of artificial neural network is established to study the relationship of channel cubage under 0m isobath in North Branch with the flow and sediment discharge at Datong gauging station, and the flow split ratio of the North Branch. The structure of the network model is fixed on 3-1-7-1. The network model is trained and tested well by choosing appropriate parameters; the computed results of BP artificial neural network agree well with that of multiple linear regressions. It can be concluded that BP artificial neural network may widely be used to predict the hydrological factors such as sediment discharge in river channel and estuary.
The hypermethylation of estrogen receptor alpha (ERα) promoter is a common molecular alteration in sporadic breast cancer (BC), but its involvement in familial BC remains largely unknown. In the present study, we analyzed the methylation statuses of four regions (ER1, ER3, ER4, and ER5) of the ERα promoter and the ERα expression levels of 113 familial BC patients in a Han Chinese Population from northeastern China and evaluated the association between major clinicopathological features and the hypermethylation statuses of the ERα gene. Tumor samples were analyzed for ERα methylation status by the methylation-specific polymerase chain reaction for ERα, PR, p53, BRCA-1, and BRCA-2 by immunohistochemical (IHC) staining and for Her-2 status by IHC and fluorescence in situ hybridization (FISH). ERα methylation was observed in tumor tissues in 47/113 (41.6%) familial BC patients. There were no significant differences in the methylation statuses among ER1 (20.4%), ER3 (18.6%), ER4 (17.7%), and ER5 (19.5%; χ (2) = 3.89, p > 0.05). An association between ERα expression level and its promoter methylation level was found. In addition, ERα methylation was significantly correlated with tumor size, PR expression, p53 nuclear accumulation, and BRCA-1 and BRCA-2 statuses. In conclusion, in familial BC patients, the level of ERα gene promoter methylation correlates with ERα expression, PR, p53 nuclear accumulation, and BRCA-1 and BRCA-2 statuses. Epigenetic alteration of ERα gene may play an important role in the pathogenesis of familial BC.
Abstract Microsporidia are prolific producers of effector molecules, encompassing both proteins and nonproteinaceous effectors, such as toxins, small RNAs, and small peptides. These secreted effectors play a pivotal role in the pathogenicity of microsporidia, enabling them to subvert the host's innate immunity and co‐opt metabolic pathways to fuel their own growth and proliferation. However, the genomes of microsporidia, despite falling within the size range of bacteria, exhibit significant reductions in both structural and physiological features, thereby affecting the repertoire of secretory effectors to varying extents. This review focuses on recent advances in understanding how microsporidia modulate host cells through the secretion of effectors, highlighting current challenges and proposed solutions in deciphering the complexities of microsporidial secretory effectors.
Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporoplasm passage, and the absence of genetic techniques for the manipulation of microsporidia, study of this organelle has been difficult and there is relatively little known regarding polar tube formation and the function of the proteins making up this structure. Herein, we have characterized polar tube protein 4 (PTP4) from the microsporidium Encephalitozoon hellem and found that a monoclonal antibody to PTP4 labels the tip of the polar tube suggesting that PTP4 might be involved in a direct interaction with host cell proteins during invasion. Further analyses employing indirect immunofluorescence (IFA), enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays confirmed that PTP4 binds to mammalian cells. The addition of either recombinant PTP4 protein or anti-PTP4 antibody reduced microsporidian infection of its host cells in vitro. Proteomic analysis of PTP4 bound to host cell membranes purified by immunoprecipitation identified transferrin receptor 1 (TfR1) as a potential host cell interacting partner for PTP4. Additional experiments revealed that knocking out TfR1, adding TfR1 recombinant protein into cell culture, or adding anti-TfR1 antibody into cell culture significantly reduced microsporidian infection rates. These results indicate that PTP4 is an important protein competent of the polar tube involved in the mechanism of host cell infection utilized by these pathogens.
Microsporidia are obligate intracellular pathogens identified ∼150 years ago as the cause of pébrine, an economically important infection in silkworms. There are about 220 genera and 1,700 species of microsporidia, which are classified based on their ultrastructural features, developmental cycle, host-parasite relationship, and molecular analysis.
Angiotensin II type 1 receptor-associated protein (ATRAP) is widely expressed in different tissues and organs, although its mechanistic role in breast cancer remains unclear. Here, we show that ATRAP is highly expressed in breast cancer tissues. Its aberrant upregulation promotes breast cancer aggressiveness and is positively correlated with poor prognosis. Functional assays revealed that ATRAP participates in promoting cell growth, metastasis, and aerobic glycolysis, while microarray analysis showed that ATRAP can activate the AKT/mTOR signaling pathway in cancer progression. In addition, ATRAP was revealed to direct Ubiquitin-specific protease 14 (USP14)-mediated deubiquitination and stabilization of Pre-B cell leukemia homeobox 3 (PBX3). Importantly, ATRAP is a direct target of Upstream stimulatory factor 1 (USF1), and that ATRAP overexpression reverses the inhibitory effects of USF1 knockdown. Our study demonstrates the broad contribution of the USF1/ATRAP/PBX3 axis to breast cancer progression and provides a strong potential therapeutic target.