Water content plays a crucial role in seed development, particularly at the seed sowing stage, and it ensures good seed germination. A water seed drill was designed and developed to provide an optimum quantity of water that is required for the soil in the same furrow, right after seed placement. This soil moistening method not only improves the moisture level in the field, but it also saves a large amount of water by applying the needed water quantity in the line of sowing after seed placement. The water seed drill consisted of a wheat seed drill, a water application system, and a tank with 400 L capacity. The water seed drill yielded a 48% higher germination count than when wheat is planted through a conventional method. The data recorded also showed that the water seed drill raised the soil moisture to 24% from the existing 13% soil moisture content. The total operational cost of the water seed drill was 2.57-fold greater than the conventional seed drill, but the output cost of the water seed drill was 2.15 times (49,000 Rs/ha) more than that of the conventional seed drill.
Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.
The density of herbaceous crops creates a suitable environment to produce pathogens in the soil that intensify the attack of pathogens traditionally controlled by disinfectant, which are mostly prohibited and unlisted because of their toxicity. Grafting is an alternative technique to enhance abiotic stress tolerance and reduce root diseases due to soil-borne pathogens, thus enhancing crop production. This research study was conducted during the crop season of 2017 and 2018 in order to investigate the interactive effect of different grafting techniques of hybrid scion onto local rootstocks on plants survival, plant phenological growth, fruit yield and fruit quality under a controlled environment. The hybrid cucumber was also planted self-rooted. The cucumber (Cucumis sativus L.) cv. Kalaam F1, Syngenta was grafted onto four local cucurbitaceous rootstocks; ridge gourd (Luffa operculate Cogn.), bitter gourd (Momordica charantia L.), pumpkin (Cucurbita pepo L.), bottle gourd (Lagenaria siceraria (Molina) Standl.) using splice grafting, tongue approach, single cotyledon and hole insertion grafting techniques and self-rooted hybrid cucumber under greenhouse conditions. The experimental results indicated that all local cucurbitaceous rootstocks showed a high compatibility with hybrid cucumber scion in the splice grafting method compared to other grafting and non-grafted methods. Lagenaria siceraria rootstocks were found highly compatible with cucumber cv Kalaam scion which gave significantly maximum plant survival rates (95%) due to high sap contents, high SPAD value, better vegetative growth and maximum fruit yield when compared with other rootstocks by employing the splice grafting method followed by tongue approach, single cotyledon and hole insertion grafting while the fruit quality of all rootstocks was observed to be similar. The non-grafted cucumber cv. Kalaam F1 showed significant results of plant vegetative growth, fruit development and fruit quality and encountered grafting methods while the lowest result were associated with the hole insertion grafting method in all scion/rootstock combinations. The grafted plants have no significant effect on cucumber fruit dry matter and fruit quality while the fruit mineral compositions (N, P, K, Ca and Mg) were higher among grafted and non-grafted plant fruits. The results indicate that grafting hybrid cucumber onto four local cucurbitaceous rootstocks influenced growth, yield and fruit quality. Grafting can be alternative and control measure for soil-borne disease and to enhance cucumber production.
Instrumental climatological records such as weather stations data of northern areas of Pakistan are not sufficient to assess the forest extreme events reliably. To understand the past climatic variability, tree ring width based climatic reconstruction is the best alternative to trace climate variability that goes back in time. Quercus Incana is the most sensitive species to drought and climatic variation in northern Pakistan. However, very little research quantifies the rate of ongoing climatic changes. A total of 65 tree cores were collected from two sites to understand the radial growth of Q . Incana to extreme drought events. The radial growth is mainly affected by high temperatures during May-July. In addition, radial growth exhibits a positive correlation with February-June precipitation while it is negatively correlated with the September precipitation. The radial growth decrease, particularly in harsh climatic conditions. The reconstructed tree ring record was strongly coherent with the May-June self-calibrated Palmer drought severity index (scPDSI) and reliable in reconstructing drought variability for the period 1750–2014. During the past 264 years, wet periods were found during 1980–2010, 1812–1836, and 1754–1760, while dry periods were found during 1896–1922, 1864–1876, and 1784–1788. Our reconstruction explains 39.8% of the scPDSI variance. The extreme drought and wet years we arrived at were in close agreement with the drought and wet periods that occurred in northern Pakistan. Wavelet analysis revealed drought variability at periodicities of 2.2–2.5, 3.3, 3–4, 16.7, 16.8, and 68–78.8 years. Hence it is concluded that deforestation and forest degradation rate increased with extreme drought and wet years. Overall, the variation of drought in northern Pakistan seems to have been affected due to El Nino south oscillation, Pacific decadal oscillation, or Atlantic multi-decadal oscillations.
Energy management in crop production system is an essential component in sustainable agricultural production systems.The aim of study was to evaluate the impact of flat planting (FP), ridge planting (RP) and direct planting (DP) methods under reduced tillage system (RTS) on the energy balances used in silage corn production, planted after winter wheat crop in Potohar region.The study was carried out under complete randomized design (CRD) with three replications at Koont research farm Chakwal, PMAS-Arid Agriculture University, Rawalpindi during 2018 and 2019 crop seasons.Results of this study indicated that the specific energy value of reduced tillage flat planting was calculated as 0.44 MJ-kg -1 , ridge planting as 0.40 MJ-kg -1 , and direct drilling was calculated as 0.46 MJ-kg -1 .Comparing the energy output/input rates, this rate was determined as 9.34 in reduced tillage flat planting, as 10.36 in ridge planting, and as 9.06 in direct drilling.In all methods, it was shown that fertilizer energy had the maximum rate of application among the total input energies.Corn cultivation with ridge sowing is more energy efficient and profitable production technique under rainfed agriculture in Potohar region.
rapidly disappearing.Biodiversity is deeply disturbed.Annual fossil fuel combustion releases billions of tons of greenhouse gases responsible for global warming and climate change.From 1960 to 2015 agricultural production increased three times because of the Green Revolution that enhanced productivity and improved the use of land, water, and other natural resources for agricultural purposes.That period Abstract | Food insecurity is becoming more alarming for Pakistan due to a range of issues including market instability, climate change, natural disasters and natural calamities.Therefore, rural advisory services to improve food security among the farming community are imperative.The present study was designed to explore various rural advisory service mechanisms for improving food security in the Sargodha district.The sample size of the study was 120 farmers.An interview schedule was used as a research instrument for data collection using the face-to-face interview method.Descriptive statistics; mean, frequencies and percentages were applied to draw results and to interpret.The prominent mode of rural advisory services by the public sector was 'training program' whereas for the private sector it was 'advice on phone'.
Forests across the world are considered to be a huge socio-economic and environmental benefit to host and adjacent communities. This study focuses on assessing the impacts of fuelwood and timber consumption on the livelihood of households in the Baltistan region in Pakistan. Primary and secondary sources of data were employed for the study. The primary sources involved the use of questionnaire survey and interview while the secondary sources involved the use of documented information in textbooks and internet materials. The study revealed that 82% of the people within the region were involved in agricultural activities, 71% depended on the extraction of forest resources for their livelihood, while 18% depended on off-farm activities for their livelihood. The study also observed that among the number that depended on forest resources for their livelihood, 59% were involved in the extraction of non-timber forest products while 41% were involved in the extraction of timber forest resources. The study further revealed that there was no significant difference in the level of benefits from the forest across the seven districts under investigation with a chi square value. The volume of forest products extraction was found to be high closest to the forest and to be low with increasing distance from the communities. The major benefits from the forest range were due to employment that increases the individual and family income. Forest also helps to control erosion and enhances aesthetic beautification and temperature regulation. The research suggests that the policy makers must provide a sustainable solution to reduce the overexploitation of the forest resources by providing better alternative earning resources to the resident communities.