Cyclin A2 plays a key role in cell cycle regulation. It is essential in embryonic cells and in the hematopoietic lineage yet dispensable in fibroblasts. In this paper, we demonstrate that Cyclin A2–depleted cells display a cortical distribution of actin filaments and increased migration. These defects are rescued by restoration of wild-type Cyclin A2, which directly interacts with RhoA, or by a Cyclin A2 mutant unable to associate with Cdk. In vitro, Cyclin A2 potentiates the exchange activity of a RhoA-specific guanine nucleotide exchange factor. Consistent with this, Cyclin A2 depletion enhances migration of fibroblasts and invasiveness of transformed cells via down-regulation of RhoA activity. Moreover, Cyclin A2 expression is lower in metastases relative to primary colon adenocarcinoma in matched human tumors. All together, these data show that Cyclin A2 negatively controls cell motility by promoting RhoA activation, thus demonstrating a novel Cyclin A2 function in cytoskeletal rearrangements and cell migration.
Background: ABX464 is a small oral molecule with a novel mode of action. It binds the Cap Binding Complex, involved in the biogenesis of RNAs and predominantly upregulates the expression of a microRNA miR-124 in PBMCs and T cells (1). miR-124 has been widely described for its anti-inflammatory properties, with many confirmed targets i.e. monocyte chemoattractant protein 1 (MCP-1, CXCL-1, SERPIN-E1, STAT-3, IL-6 receptor. It post-transcriptionally regulates the expression of MCP-1 in rheumatoid arthritis (RA) synoviocytes and decreases their proliferation (2). While miR-124 is decreased in synoviocytes of RA patients, its injection in joint improved arthritis in rats (3). miR-124 expression in macrophages leads to the induction and maintenance of anti-inflammatory M2 phenotype (4). Its effect in T cells remains controversial. Objectives: (i) To assess the effect of ABX464 on miR-124 expression in vitro in macrophages and in vivo in patients; (ii) to assess the effect of ABX464 on arthritis in mice and (iii) to decipher the effect of ABX464 on human macrophages and T cells. Methods: miR-124 was measured in human monocyte-derived macrophages (huMDM) treated with ABX464 for 4 days and in patients with ulcerative colitis included in a phase IIa RCT in blood and rectal biopsies at day 56 by TaqMan qPCR. Collagen-induced arthritis (CIA) was induced using usual protocol and ABX464 was given by gavage 2 weeks at 40 mg/kg after the 2 nd injection of collagen and Freund adjuvant. HuMDM were exposed to 5 µM of ABX464 or DMSO (control) for 4 days, during a M1-polarization. Cytokines and chemokines were assessed in supernatants using both Proteome Profiler Array and Luminex. PBMCs were exposed to ABX464 (5 µM) for 6 days. Th1 (IFN-g+), Th17 (CCR6+IL-17+), Th2 (CRTH2+ IL-4+) and Tregs (CD25+CD125-/loFoxP3+) were assessed by flow cytometry. IL-6 receptor was assessed in CD4+ supernatant using ELISA. Results: ABX464 increased miR-124 in vitro by 3.41 folds in huMDM (p=0.001) compared to DMSO. The phase IIa RCT conducted in 32 patients with moderate to severe active ulcerative colitis showed a good safety profile and significant clinical efficacy. A strong increase of miR-124 was observed both in blood and rectal biopsies of patients treated with ABX464 (637 and 7.69 folds respectively, compared to placebo, p<0.05). The use of ABX464 drastically decreased the incidence of arthritis from 52% (15/ 29 mice) to 10% (3/30 mice) in a CIA model. Macrophages treated with ABX464 produced significantly less MCP-1 (median decrease -67%, p=0.004), CXCL-1 (-18%, p=0.004) and SERPIN-E1 (-53%, p=0.004), as confirmed by the two technics (n=9). ABX464 significantly decreased Th17 (-56%, p=0.02), while increasing Th2 (+21%, p=0.01). IL-6 soluble receptor was significantly decreased in supernatant of PBMCs treated with ABX464 (-43%, p=0.04). Conclusion: We demonstrated that ABX464 increases miR-124 both in vitro and in ulcerative colitis patients. In vitro , ABX464 decreased the expression of miR-124 target genes, that is MCP-1, CXCL-1, SERPIN-E1 in macrophages and decreases the number of Th17 as well as IL-6 soluble receptor in CD4+ T cells. A phase IIa RCT is currently ongoing in patients with rheumatoid arthritis and inadequate response to methotrexate and/or TNF-inhibitors (n=60). Results are expected during 2020 summer. References: [1]Vautrin A et al. Sci Rep. 2019;9:792 [2]Nakamachi Y et al. Arthritis Rheum 2009; 60:1294-304 [3]Nakamachi Y et al. Ann Rheum Dis 2016; 75:601-8 [4]Veremeyko T et al. PLoS ONE 2013; 8:e81774 Disclosure of Interests: Christina BEGON-PESCIA: None declared, Julie Mielle: None declared, Noélie Campose Employee of: ABIVAX, Karim Chebli Consultant of: ABIVAX, Laurent Manchon: None declared, Julien Santo Employee of: ABIVAX, Cécile Apolit Employee of: ABIVAX, Kévin Martin Grant/research support from: ABIVAX, Laure Lapasset Employee of: ABIVAX, Audrey Vautrin Employee of: ABIVAX, Didier Scherrer Employee of: ABIVAX, Aude Garcel Employee of: ABIVAX, Jamal Tazi Shareholder of: ABIVAX, Grant/research support from: ABIVAX, Consultant of: ABIVAX, Employee of: ABIVAX, Paid instructor for: ABIVAX, Speakers bureau: ABIVAX, Claire DAIEN Grant/research support from: from Pfizer, Abbvie, Roche-Chugaï, Novartis, Abivax, Sandoz, Consultant of: Abbvie, Abivax, BMS, MSD, Roche-Chugaï, Lilly, Novartis, Speakers bureau: Abbvie, Abivax, BMS, MSD, Roche-Chugaï, Lilly, Novartis
Experimental metadata of the manuscript " Dynamics of macrophage polarization support Salmonella persistence in a whole living organism " by Leiba et al.
RNA-binding proteins of the L7Ae family are at the heart of many essential ribonucleoproteins (RNPs), including box C/D and H/ACA small nucleolar RNPs, U4 small nuclear RNP, telomerase, and messenger RNPs coding for selenoproteins. In this study, we show that Nufip and its yeast homologue Rsa1 are key components of the machinery that assembles these RNPs. We observed that Rsa1 and Nufip bind several L7Ae proteins and tether them to other core proteins in the immature particles. Surprisingly, Rsa1 and Nufip also link assembling RNPs with the AAA + adenosine triphosphatases hRvb1 and hRvb2 and with the Hsp90 chaperone through two conserved adaptors, Tah1/hSpagh and Pih1. Inhibition of Hsp90 in human cells prevents the accumulation of U3, U4, and telomerase RNAs and decreases the levels of newly synthesized hNop58, hNHP2, 15.5K, and SBP2. Thus, Hsp90 may control the folding of these proteins during the formation of new RNPs. This suggests that Hsp90 functions as a master regulator of cell proliferation by allowing simultaneous control of cell signaling and cell growth.