<div>Abstract<p>Hepatocellular carcinoma (HCC) is frequently associated with infiltrating mononuclear inflammatory cells. We performed laser capture microdissection of HCC-infiltrating and noncancerous liver-infiltrating mononuclear inflammatory cells in patients with chronic hepatitis C (CH-C) and examined gene expression profiles. HCC-infiltrating mononuclear inflammatory cells had an expression profile distinct from noncancerous liver-infiltrating mononuclear inflammatory cells; they differed with regard to genes involved in biological processes, such as antigen presentation, ubiquitin-proteasomal proteolysis, and responses to hypoxia and oxidative stress. Immunohistochemical analysis and gene expression databases suggested that the up-regulated genes involved macrophages and Th1 and Th2 CD4 cells. We next examined the gene expression profile of peripheral blood mononuclear cells (PBMC) obtained from CH-C patients with or without HCC. The expression profiles of PBMCs from patients with HCC differed significantly from those of patients without HCC (<i>P</i> < 0.0005). Many of the up-regulated genes in HCC-infiltrating mononuclear inflammatory cells were also differentially expressed by PBMCs of HCC patients. Analysis of the commonly up-regulated or down-regulated genes in HCC-infiltrating mononuclear inflammatory cells and PBMCs of HCC patients showed networks of nucleophosmin, SMAD3, and proliferating cell nuclear antigen that are involved with redox status, the cell cycle, and the proteasome system, along with immunologic genes, suggesting regulation of anticancer immunity. Thus, exploring the gene expression profile of PBMCs may be a surrogate approach for the assessment of local HCC-infiltrating mononuclear inflammatory cells. [Cancer Res 2008;68(24):10267–79]</p></div>
Supplementary Tables 1-4 from Common Transcriptional Signature of Tumor-Infiltrating Mononuclear Inflammatory Cells and Peripheral Blood Mononuclear Cells in Hepatocellular Carcinoma Patients
<div>Abstract<p>Hepatocellular carcinoma (HCC) is frequently associated with infiltrating mononuclear inflammatory cells. We performed laser capture microdissection of HCC-infiltrating and noncancerous liver-infiltrating mononuclear inflammatory cells in patients with chronic hepatitis C (CH-C) and examined gene expression profiles. HCC-infiltrating mononuclear inflammatory cells had an expression profile distinct from noncancerous liver-infiltrating mononuclear inflammatory cells; they differed with regard to genes involved in biological processes, such as antigen presentation, ubiquitin-proteasomal proteolysis, and responses to hypoxia and oxidative stress. Immunohistochemical analysis and gene expression databases suggested that the up-regulated genes involved macrophages and Th1 and Th2 CD4 cells. We next examined the gene expression profile of peripheral blood mononuclear cells (PBMC) obtained from CH-C patients with or without HCC. The expression profiles of PBMCs from patients with HCC differed significantly from those of patients without HCC (<i>P</i> < 0.0005). Many of the up-regulated genes in HCC-infiltrating mononuclear inflammatory cells were also differentially expressed by PBMCs of HCC patients. Analysis of the commonly up-regulated or down-regulated genes in HCC-infiltrating mononuclear inflammatory cells and PBMCs of HCC patients showed networks of nucleophosmin, SMAD3, and proliferating cell nuclear antigen that are involved with redox status, the cell cycle, and the proteasome system, along with immunologic genes, suggesting regulation of anticancer immunity. Thus, exploring the gene expression profile of PBMCs may be a surrogate approach for the assessment of local HCC-infiltrating mononuclear inflammatory cells. [Cancer Res 2008;68(24):10267–79]</p></div>
Supplementary Figure 3 from Common Transcriptional Signature of Tumor-Infiltrating Mononuclear Inflammatory Cells and Peripheral Blood Mononuclear Cells in Hepatocellular Carcinoma Patients
Radiation therapy is an important alternative treatment for advanced cancer. The aim of the current study was to disclose distinct alterations of the biological characteristics of gene expression features in pancreatic cancer cells, MIAPaCa-2, following proton and X-ray irradiation.Using cDNA microarray, we examined the gene expression alterations of MIAPaCa-2 cells following proton or X-ray irradiation. We also isolated the surviving MIAPaCa-2 cells after irradiation and analyzed their gene expression profiles.Although the cytocidal effects of both types of irradiation were similar at sufficient doses in vitro and in vivo, the affected gene expression profile alterations of MIAPaCa-2 cells irradiated with protons were distinct from those irradiated with X-ray. Interestingly, clustering analysis of gene expression of the surviving MIAPaCa-2 cells was also completely discernible between the two types of irradiation. However, a similar cytocidal effect was still observed in the proton- and X-ray-irradiated surviving cells after re-irradiation, commonly showing biological effects related to apoptosis and cell cycle processes.Proton irradiation treatment for pancreatic cancer provides the distinct biological effect of steady gene expression alterations compared to X-ray irradiation; however, surviving cells from both types of irradiation were still susceptible to the cytocidal effects induced by proton re-irradiation treatment.
Supplementary Figure 2 from Common Transcriptional Signature of Tumor-Infiltrating Mononuclear Inflammatory Cells and Peripheral Blood Mononuclear Cells in Hepatocellular Carcinoma Patients
Supplementary Figure Legends 1-3 from Common Transcriptional Signature of Tumor-Infiltrating Mononuclear Inflammatory Cells and Peripheral Blood Mononuclear Cells in Hepatocellular Carcinoma Patients
Supplementary Figure Legends 1-3 from Common Transcriptional Signature of Tumor-Infiltrating Mononuclear Inflammatory Cells and Peripheral Blood Mononuclear Cells in Hepatocellular Carcinoma Patients
Supplementary Figure 2 from Common Transcriptional Signature of Tumor-Infiltrating Mononuclear Inflammatory Cells and Peripheral Blood Mononuclear Cells in Hepatocellular Carcinoma Patients
Background: Radiation therapy is an important alternative treatment for advanced cancer. The aim of the current study was to disclose distinct alterations of the biological characteristics of gene expression features in pancreatic cancer cells, MIAPaCa-2, following proton and X-ray irradiation. Materials and methods: Using cDNA microarray, we examined the gene expression alterations of MIAPaCa-2 cells following proton or X-ray irradiation. We also isolated the surviving MIAPaCa-2 cells after irradiation and analyzed their gene expression profiles. Results: Although the cytocidal effects of both types of irradiation were similar at sufficient doses in vitro and in vivo, the affected gene expression profile alterations of MIAPaCa-2 cells irradiated with protons were distinct from those irradiated with X-ray. Interestingly, clustering analysis of gene expression of the surviving MIAPaCa-2 cells was also completely discernible between the two types of irradiation. However, a similar cytocidal effect was still observed in the proton- and X-ray-irradiated surviving cells after re-irradiation, commonly showing biological effects related to apoptosis and cell cycle processes. Conclusions: Proton irradiation treatment for pancreatic cancer provides the distinct biological effect of steady gene expression alterations compared to X-ray irradiation; however, surviving cells from both types of irradiation were still susceptible to the cytocidal effects induced by proton re-irradiation treatment.