Cell polarization occurs along a single axis that is generally determined by a spatial cue, yet the underlying mechanism is poorly understood. Using biochemical assays and live-cell imaging, we show that cell polarization to a proper growth site requires activation of Cdc42 by Bud3 in haploid budding yeast. Bud3 catalyzes the release of guanosine diphosphate (GDP) from Cdc42 and elevates intracellular Cdc42–guanosine triphosphate (GTP) levels in cells with inactive Cdc24, which has as of yet been the sole GDP–GTP exchange factor for Cdc42. Cdc42 is activated in two temporal steps in the G1 phase: the first depends on Bud3, whereas subsequent activation depends on Cdc24. Mutational analyses suggest that biphasic activation of Cdc42 in G1 is necessary for assembly of a proper bud site. Biphasic activation of Cdc42 or Rac GTPases may be a general mechanism for spatial cue–directed cell polarization in eukaryotes.
ABSTRACT Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact lifespan is largely unknown. Here, we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact lifespan likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter lifespan, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the lifespan of budding yeast.
The Cdc42 GTPase plays a central role in polarity development in many species. In budding yeast, Cdc42 is essential for polarized growth at the proper site and also for spontaneous cell polarization in the absence of spatial cues. Cdc42 polarization is critical for multiple events in the G1 phase prior to bud emergence, including bud-site assembly, polarization of the actin cytoskeleton, and septin filament assembly to form a ring at the new bud site. Yet the mechanism by which Cdc42 polarizes is not fully understood. Here we report that biphasic Cdc42 polarization in the G1 phase is coupled to stepwise assembly of the septin ring for bud emergence. We show that the Rsr1 GTPase shares a partially redundant role with Gic1 and Gic2, two related Cdc42 effectors, in the first phase of Cdc42 polarization in haploid cells. We propose that the first phase of Cdc42 polarization is mediated by positive feedback loops that function in parallel-one involving Rsr1 via local activation of Cdc42 in response to spatial cues and another involving Gic1 or Gic2 via reduction of diffusion of active Cdc42.
Yeast cells organize their actin cytoskeleton in a highly polarized manner during vegetative growth. The Ras-like GTPase Rsr1/Bud1 and its regulators are required for selection of a specific site for growth. Here we showed that Rsr1/Bud1 was broadly distributed on the plasma membrane and highly concentrated at the incipient bud site and polarized growth sites. We also showed that localization of Cdc24, a guanine nucleotide exchange factor for the Cdc42 GTPase, to the proper bud site was dependent on Rsr1/Bud1. Surprisingly, Rsr1/Bud1 also localized to intracellular membranes. A mutation in the lysine repeat in the hypervariable region of Rsr1/Bud1 specifically abolished its plasma membrane localization, whereas a mutation at the CAAX motif eliminated both plasma membrane and internal membrane association of Rsr1/Bud1. Thus the lysine repeat and the CAAX motif of Rsr1/Bud1 are important for its localization to the plasma membrane and to the polarized growth sites. This localization of Rsr1/Bud1 is essential for its function in proper bud site selection because both mutations resulted in random bud site selection.
The role of mitochondrial 70-kD heat shock protein (mt-hsp70) in protein translocation across both the outer and inner mitochondrial membranes was studied using two temperature-sensitive yeast mutants. The degree of polypeptide translocation into the matrix of mutant mitochondria was analyzed using a matrix-targeted preprotein that was cleaved twice by the processing peptidase. A short amino-terminal segment of the preprotein (40-60 amino acids) was driven into the matrix by the membrane potential, independent of hsp70 function, allowing a single cleavage of the presequence. Artificial unfolding of the preprotein allowed complete translocation into the matrix in the case where mutant mt-hsp70 had detectable binding activity. However, in the mutant mitochondria in which binding to mt-hsp70 could not be detected the mature part of the preprotein was only translocated to the intermembrane space. We propose that mt-hsp70 fulfills a dual role in membrane translocation of preproteins. (a) Mt-hsp70 facilitates unfolding of the polypeptide chain for translocation across the mitochondrial membranes. (b) Binding of mt-hsp70 to the polypeptide chain is essential for driving the completion of transport of a matrix-targeted preprotein across the inner membrane. This second role is independent of the folding state of the preprotein, thus identifying mt-hsp70 as a genuine component of the inner membrane translocation machinery. Furthermore we determined the sites of the mutations and show that both a functional ATPase domain and ATP are needed for mt-hsp70 to bind to the polypeptide chain and drive its translocation into the matrix.
The fdxA gene was identified upstream of and in the opposite direction from the Caulobacter crescentus cysC gene. Analyses of the nucleotide sequence and the deduced amino acid sequence of the fdxA gene demonstrated that it encodes a ferredoxin with a molecular mass of 12,080 Da. This ferredoxin has common structural features with ferredoxins that contain a [3Fe-4S] and a [4Fe-4S] cluster, including seven conserved cysteines responsible for the binding of the two clusters. A mutation in the fdxA gene was obtained, and the resulting strain did not produce one of the two ferredoxins (FdI) found in C. crescentus. Further experiments demonstrated that the fdxA gene is temporally expressed in C. crescentus and that FdI is required for completion of the cell cycle at 37 degrees C.
ABSTRACT Previous characterization of Pseudomonas aeruginosa clinical isolates has demonstrated an inverse correlation between cytotoxicity and internalization by epithelial cells. To further investigate this relationship, we tested PA103, a cytotoxic P. aeruginosa strain, and 33 isogenic noncytotoxic transposon mutants for internalization by Madin-Darby canine kidney cells. The majority of the mutants were not internalized, demonstrating that an inverse correlation between cytotoxicity and bacterial uptake by epithelial cells is not absolute. Six of the noncytotoxic mutants, however, demonstrated measurable levels of internalization by standard aminoglycoside exclusion assays even though internalization of wild-type strain PA103 was not detectable. All six had evidence of protein secretion defects involving two proteins, a 40-kDa protein and a 32-kDa protein. These proteins, designated PepB (for Pseudomonas exoprotein B) and PepD, respectively, each had characteristics of type III transported proteins. In addition, nucleotide sequencing studies demonstrated that PepB and PepD are homologs of YopB and YopD, respectively, type III secreted proteins of Yersinia spp. necessary for the translocation of effector molecules into the cytoplasmic compartment of eukaryotic cells. Thus, while many mutations in PA103 result in loss of cytotoxicity without an appreciable increase in internalization, defects in transport of type III secretion proteins PepB and PepD correlate with both loss of cytotoxicity and gain of internalization. These results are consistent with type III secretion of an inhibitor of internalization that requires PepB and PepD for translocation into the host cell.
Cell polarization generally occurs along a single axis that is directed by a spatial cue. Cells of the budding yeast Saccharomyces cerevisiae undergo polarized growth and oriented cell division in a spatial pattern by selecting a specific bud site. Haploid a or α cells bud in the axial pattern in response to a transient landmark that includes Bud3, Bud4, Axl1, and Axl2. Septins, a family of filament-forming GTP-binding proteins, are also involved in axial budding and recruited to an incipient bud site, but the mechanism of recruitment remains unclear. Here, we show that Axl2 interacts with Bud3 and the Cdc42 GTPase in its GTP-bound state. Axl2 also interacts with Cdc10, a septin subunit, promoting efficient recruitment of septins near the cell division site. Furthermore, a cdc42 mutant defective in the axial budding pattern at a semi-permissive temperature had a reduced interaction with Axl2 and compromised septin recruitment in the G1 phase. We thus propose that active Cdc42 brings Axl2 to the Bud3-Bud4 complex and that Axl2 then interacts with Cdc10, linking septin recruitment to the axial landmark.
We report the isolation and characterization of a previously unidentified Escherichia coli gene that suppresses the temperature-sensitive growth and filamentation of a dnaK deletion mutant strain. Introduction of a multicopy plasmid carrying this wild-type gene into a dnaK deletion mutant strain rescued the temperature-sensitive growth of the dnaK deletion mutant strain at 40.5 degrees C and the filamentation, fully at 37 degrees C and partially at 40.5 degrees C. However, the inability of dnaK mutant cells to support bacteriophage lambda growth was not suppressed. This gene was also able to suppress the temperature-sensitive growth of a grpE280 mutant strain at 41 degrees C. Filamentation of the grpE280 mutant strain was suppressed at 37 degrees C but not at 41 degrees C. The dnaK suppressor gene, designated dksA, maps near the mrcB gene (3.7 min on the E. coli chromosome). DNA sequence analysis and in vivo experiments showed that dksA encodes a 17,500-Mr polypeptide. Gene disruption experiments indicated that dksA is not an essential gene.