Long-range material transport is essential to maintain the physiological functions of multicellular organisms such as animals and plants. By contrast, material transport in bacteria is often short-ranged and limited by diffusion. Here, we report a unique form of actively regulated long-range directed material transport in structured bacterial communities. Using Pseudomonas aeruginosa colonies as a model system, we discover that a large-scale and temporally evolving open-channel system spontaneously develops in the colony via shear-induced banding. Fluid flows in the open channels support high-speed (up to 450 µm/s) transport of cells and outer membrane vesicles over centimeters, and help to eradicate colonies of a competing species Staphylococcus aureus . The open channels are reminiscent of human-made canals for cargo transport, and the channel flows are driven by interfacial tension mediated by cell-secreted biosurfactants. The spatial-temporal dynamics of fluid flows in the open channels are qualitatively described by flow profile measurement and mathematical modeling. Our findings demonstrate that mechanochemical coupling between interfacial force and biosurfactant kinetics can coordinate large-scale material transport in primitive life forms, suggesting a new principle to engineer self-organized microbial communities.
Microbial communities such as biofilms are commonly found at interfaces. However, it is unclear how the physical environment of interfaces may contribute to the development and behavior of surface-associated microbial communities. Combining multimode imaging, single-cell tracking, and numerical simulations, here, we found that activity-induced interface bulging promotes colony biofilm formation in
Paired electrosynthetic technology is of significance to realize the co‐production of high‐added value chemicals. However, exploiting efficient bifunctional electrocatalyst of the concurrent electrocatalysis to achieve the industrial‐level performance is still challenging. Herein, an amorphous Co2P@MoOx heterostructure is rationally designed by in‐situ electrodeposition strategy, which is acted as excellent bifunctional catalysts for the electrocatalytic nitrite reduction reaction (NO2RR) and glycerol oxidation reaction (GOR). The membrane‐electrode assembly (MEA) electrolyzer realizes a low voltage of 1.30 V, robust stability over 200 h at 100 mA cm‐2, high Faraday efficiencies and yield of NH3 (above 95%, 49.7 mg h‐1 cm‐2) and formate (above 95%, 152.3 mg h‐1 cm‐2) at industrial‐level current density of 500 mA cm‐2. In‐situ spectroscopy studies have shown that high‐valence CoOOH is the main active material of GOR, and the main catalytic conversion pathway of NO2RR involves key *NH2OH reaction intermediates. In addition, theoretical calculations confirm that the Co2P@MoOx heterostructure has strong interfacial electronic interaction and optimized reaction energy barriers, which endows its intrinsically high electrocatalytic activity for the co‐electrosynthesis of NH3 and formate.
Paired electrosynthetic technology is of significance to realize the co‐production of high‐added value chemicals. However, exploiting efficient bifunctional electrocatalyst of the concurrent electrocatalysis to achieve the industrial‐level performance is still challenging. Herein, an amorphous Co2P@MoOx heterostructure is rationally designed by in‐situ electrodeposition strategy, which is acted as excellent bifunctional catalysts for the electrocatalytic nitrite reduction reaction (NO2RR) and glycerol oxidation reaction (GOR). The membrane‐electrode assembly (MEA) electrolyzer realizes a low voltage of 1.30 V, robust stability over 200 h at 100 mA cm‐2, high Faraday efficiencies and yield of NH3 (above 95%, 49.7 mg h‐1 cm‐2) and formate (above 95%, 152.3 mg h‐1 cm‐2) at industrial‐level current density of 500 mA cm‐2. In‐situ spectroscopy studies have shown that high‐valence CoOOH is the main active material of GOR, and the main catalytic conversion pathway of NO2RR involves key *NH2OH reaction intermediates. In addition, theoretical calculations confirm that the Co2P@MoOx heterostructure has strong interfacial electronic interaction and optimized reaction energy barriers, which endows its intrinsically high electrocatalytic activity for the co‐electrosynthesis of NH3 and formate.
As financial markets grow increasingly complex, there is a rising need for automated tools that can effectively assist human analysts in equity research, particularly within sell-side research. While Generative AI (GenAI) has attracted significant attention in this field, existing AI solutions often fall short due to their narrow focus on technical factors and limited capacity for discretionary judgment. These limitations hinder their ability to adapt to new data in real-time and accurately assess risks, which diminishes their practical value for investors. This paper presents FinRobot, the first AI agent framework specifically designed for equity research. FinRobot employs a multi-agent Chain of Thought (CoT) system, integrating both quantitative and qualitative analyses to emulate the comprehensive reasoning of a human analyst. The system is structured around three specialized agents: the Data-CoT Agent, which aggregates diverse data sources for robust financial integration; the Concept-CoT Agent, which mimics an analysts reasoning to generate actionable insights; and the Thesis-CoT Agent, which synthesizes these insights into a coherent investment thesis and report. FinRobot provides thorough company analysis supported by precise numerical data, industry-appropriate valuation metrics, and realistic risk assessments. Its dynamically updatable data pipeline ensures that research remains timely and relevant, adapting seamlessly to new financial information. Unlike existing automated research tools, such as CapitalCube and Wright Reports, FinRobot delivers insights comparable to those produced by major brokerage firms and fundamental research vendors. We open-source FinRobot at \url{https://github. com/AI4Finance-Foundation/FinRobot}.
o uncover the regulatory metabolism of poly-glutamic acid (PGA) in protecting wheat crops against salt stress (SS) at the physiological level, we utilised hydroponic experiments to explore the roles of PGA in regulating the photosynthetic performance, water physiology, antioxidant metabolism and ion homeostasis of wheat seedlings exposed to SS for 10 days. The findings demonstrated that SS inhibited the photosynthetic performance of wheat seedlings. In contrast, different doses of PGA all improved the photosynthetic performance, especially for 0.3% PGA. Compared with SS, 0.3% PGA plus SS decreased nonphotochemical quenching (qN) by 26.3% and respectively increased photosynthetic rate (Pn), soil and plant analyser development (SPAD) value, maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), photochemical quenching (qP) and actual photochemical efficiency of PSII (Y(II)) by 54.0, 27.8, 34.6, 42.4 and 25.8%. For water metabolism, SS destroyed the water balance of wheat seedlings. In contrast, different doses of PGA enhanced water balance, especially for 0.3% PGA. Compared with SS, 0.3% PGA plus SS decreased leaf water saturation deficit (LWSD) by 35.5% and respectively increased leaf relative water content (LRWC), transpiration rate (Tr), stomatal conductance (gs) and the contents of soluble sugars (SSS) and proline (Pro) by 15.9, 94.7, 37.5, 44.6 and 62.3%. For antioxidant metabolism, SS induced the peroxide damage to wheat seedlings. In contrast, different doses of PGA all mitigated the SS-induced peroxide damage, especially for 0.3% PGA. Compared with SS, 0.3% PGA plus SS respectively decreased superoxide anion (O2–), hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents and electrolyte leakage (EL) by 39.1, 29.6, 46.2 and 36.3%, and respectively increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductases (DHAR) and monodehydroascorbate reductase (MDHAR) activities, and antioxidants ascorbic acid (AsA) and glutathione (GSH) contents by 69.2, 49.2, 77.8, 80.6, 109.5, 121.7, 104.5, 63.8 and 39.6%. Besides, SS destroyed the ion homeostasis of wheat seedlings. In contrast, different doses of PGA all maintained ion homeostasis, especially for 0.3% PGA. Compared with SS, 0.3% PGA plus SS reduced Na+ content by 40.7% and respectively increased K+, Ca2+ and Mg2+ contents by 64.4, 82.6 and 105.6%, thereby respectively increasing K+/Na+, Ca2+/Na+ and Mg2+/Na+ ratios by 177.6, 209.4 and 244.8%. In the above ways, SS inhibited wheat height and biomass. In contrast, different doses of PGA all improved wheat height and biomass under SS, especially for 0.3% PGA. Compared with SS, 0.3% PGA plus SS, respectively, increased wheat height and biomass by 27.4% and 41.7%. In the above ways, PGA mitigated salt toxicity in wheat seedlings. The current findings implied that there was a potential for the use of PGA in real situations to improve wheat salt tolerance, especially for the 0.3% dose.