Microscopic traffic simulation provides a controllable, repeatable, and efficient testing environment for autonomous vehicles (AVs). To evaluate AVs' safety performance unbiasedly, the probability distributions of environment statistics in the simulated naturalistic driving environment (NDE) need to be consistent with those from the real-world driving environment. However, although human driving behaviors have been extensively investigated in the transportation engineering field, most existing models were developed for traffic flow analysis without considering the distributional consistency of driving behaviors, which could cause significant evaluation biasedness for AV testing. To fill this research gap, a distributional consistent NDE modeling framework is proposed in this paper. Using large-scale naturalistic driving data, empirical distributions are obtained to construct the stochastic human driving behavior models under different conditions. To address the error accumulation problem during the simulation, an optimization-based method is further designed to refine the empirical behavior models. Specifically, the vehicle state evolution is modeled as a Markov chain and its stationary distribution is twisted to match the distribution from the real-world driving environment. The framework is evaluated in the case study of a multi-lane highway driving simulation, where the distributional accuracy of the generated NDE is validated and the safety performance of an AV model is effectively evaluated.
Testing and evaluation are expensive but critical steps in the development of connected and automated vehicles (CAVs). In this paper, we develop an adaptive sampling framework to efficiently evaluate the accident rate of CAVs, particularly for scenario-based tests where the probability distribution of input parameters is known from the Naturalistic Driving Data. Our framework relies on a surrogate model to approximate the CAV performance and a novel acquisition function to maximize the benefit (information to accident rate) of the next sample formulated through an information-theoretic consideration. In addition to the standard application with only a single high-fidelity model of CAV performance, we also extend our approach to the bi-fidelity context where an additional low-fidelity model can be used at a lower computational cost to approximate the CAV performance. Accordingly, for the second case, our approach is formulated such that it allows the choice of the next sample in terms of both fidelity level (i.e., which model to use) and sampling location to maximize the benefit per cost. Our framework is tested in a widely-considered two-dimensional cut-in problem for CAVs, where Intelligent Driving Model (IDM) with different time resolutions are used to construct the high and low-fidelity models. We show that our single-fidelity method outperforms the existing approach for the same problem, and the bi-fidelity method can further save half of the computational cost to reach a similar accuracy in estimating the accident rate.
Testing and evaluation is a crucial step in the development and deployment of Connected and Automated Vehicles (CAVs). To comprehensively evaluate the performance of CAVs, it is of necessity to test the CAVs in safety-critical scenarios, which rarely happen in naturalistic driving environment. Therefore, how to purposely and systematically generate these corner cases becomes an important problem. Most existing studies focus on generating adversarial examples for perception systems of CAVs, whereas limited efforts have been put on the decision-making systems, which is the highlight of this paper. As the CAVs need to interact with numerous background vehicles (BVs) for a long duration, variables that define the corner cases are usually high dimensional, which makes the generation a challenging problem. In this paper, a unified framework is proposed to generate corner cases for the decision-making systems. To address the challenge brought by high dimensionality, the driving environment is formulated based on Markov Decision Process, and the deep reinforcement learning techniques are applied to learn the behavior policy of BVs. With the learned policy, BVs will behave and interact with the CAVs more aggressively, resulting in more corner cases. To further analyze the generated corner cases, the techniques of feature extraction and clustering are utilized. By selecting representative cases of each cluster and outliers, the valuable corner cases can be identified from all generated corner cases. Simulation results of a highway driving environment show that the proposed methods can effectively generate and identify the valuable corner cases.
As a precious item in the foreign trade along the Silk Road, it is of great significance to analyze the composition and identify the type of glass relics. In this paper, through the training of random forest, the characteristic importance of each index is obtained, and the classification rule is obtained. It is determined that lead oxide (PbO) is the most important index in the classification of glass types. Then, the k value was determined by the elbow principle, and k=5 was selected as the cluster type. After that, k-means clustering was carried out on the high potassium and lead barium glass respectively to get the classification results, which were divided into 5 subclasses. Due to the small amount of data, in the random forest model, the robustness of the model is constantly enhanced through multiple hyperparameter tuning. In the trained random forest model, it is found that the results do not change, which proves the model is reasonable. At the same time, the correlation between the chemical components of the glass cultural relics samples of different categories was analyzed, and the difference of the correlation between the chemical components of different categories was compared.
Real-time safety metrics are important for automated driving systems (ADS) to assess the risk of driving situations and assist in decision-making. Although a number of real-time safety metrics have been proposed in the literature, there is a lack of systematic performance evaluations of these metrics. As different behavioral assumptions are adopted in different safety metrics, it is difficult to compare the safety metrics and evaluate their performance. To overcome this challenge, in this study, we propose an evaluation framework utilizing logged vehicle trajectory data so that vehicle trajectories for both the subject vehicle (SV) and background vehicles (BVs) are obtained and the prediction errors caused by behavioral assumptions can be eliminated. Specifically, we examine whether the SV is in a collision unavoidable situation at each moment, given all near-future trajectories of BVs. In this way, we level the ground for a fair comparison of different safety metrics, as a good safety metric should always alarm in advance to the collision unavoidable moment. When trajectory data from a large number of trips are available, we can systematically evaluate and compare different metrics' statistical performance. In the case study, three representative real-time safety metrics, including the time-to-collision (TTC), the PEGASUS Criticality Metric (PCM) and the Model Predictive Instantaneous Safety Metric (MPrISM), are evaluated using a large-scale simulated trajectory dataset. The results demonstrate that the MPrISM achieves the highest recall and the PCM has the best accuracy. The proposed evaluation framework is important for researchers, practitioners, and regulators to characterize different metrics, and to select appropriate metrics for different applications. Moreover, by conducting failure analysis on moments when a safety metric fails, we can identify its potential weaknesses, which can be valuable for potential refinements and improvements.
Cooperative driving at signal-free intersections, which aims to improve driving safety and efficiency for connected and automated vehicles, has attracted increasing interest in recent years. However, existing cooperative driving strategies either suffer from computational complexity or cannot guarantee global optimality. To fill this research gap, this paper proposes an optimal and computationally efficient cooperative driving strategy with the polynomial-time complexity. By modeling the conflict relations among the vehicles, the solution space of the cooperative driving problem is completely represented by a newly designed small-size state space. Then, based on dynamic programming, the globally optimal solution can be searched inside the state space efficiently. It is proved that the proposed strategy can reduce the time complexity of computation from exponential to a small-degree polynomial. Simulation results further demonstrate that the proposed strategy can obtain the globally optimal solution within a limited computation time under various traffic demand settings.
The purpose of this study was to assess two computation models for estimating the hand locations during lifting tasks using data from five inertial measurement units (IMUs) attached to five body segments. The first model computed the hand location with the IMU gyroscope data and the pre-defined ratios of body segment lengths. The second model used the same gyroscope information and all measured lengths of the body segments. The outcome measure of these models was the estimated hand location in 12 lifting zones defined by the ACGIH Threshold Limit Values (TLVs) for lifting. Motion data was collected with the wearable system and a laboratory-grade motion capture system on ten subjects that performed 12 two- handed lifting tasks representing the lifting zones. By including body segment measurements, the average accuracy of the model improved from 4 to 34%, suggesting that body segment information plays an important role in estimating the lifting zones.
Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs). Due to the black-box property and various types of CAVs, how to test and evaluate CAVs adaptively remains a major challenge. Many approaches have been proposed to adaptively generate testing scenarios during the testing process. However, most existing approaches cannot be applied to complex scenarios, where the variables needed to define such scenarios are high dimensional. Towards filling this gap, the adaptive testing with sparse control variates method is proposed in this paper. Instead of adaptively generating testing scenarios, our approach evaluates CAVs' performances by adaptively utilizing the testing results. Specifically, each testing result is adjusted using multiple linear regression techniques based on control variates. As the regression coefficients can be adaptively optimized for the CAV under test, using the adjusted results can reduce the estimation variance, compared with using the testing results directly. To overcome the high dimensionality challenge, sparse control variates are utilized only for the critical variables of testing scenarios. To validate the proposed method, the high-dimensional overtaking scenarios are investigated, and the results demonstrate that our approach can further accelerate the evaluation process by about 30 times.
Time headway is an important index used in characterizing dangerous driving behaviors. This research focuses on the decreasing tendency of time headway and investigates its association with crash occurrence. An autoregressive (AR) time-series model is improved and adopted to describe the dynamic variations of average daily time headway. Based on the model, a simple approach for dangerous driving behavior recognition is proposed with the aim of significantly decreasing headway. The effectivity of the proposed approach is validated by means of empirical data collected from a medium-sized city in northern China. Finally, a practical early-warning strategy focused on both the remaining life and low headway is proposed to remind drivers to pay attention to their driving behaviors and the possible occurrence of crash-related risks.