The China Dark Matter Experiment Collaboration reports the first experimental limit on weakly interacting massive particles (WIMPs) dark matter from 14.6 kg-days of data taken with a 994 g p-type point-contact germanium detector at the China Jinping underground laboratory where the rock overburden is more than 2400 m. The energy threshold achieved was 400 eVee. According to the 14.6 kg-day live data, we placed the limit of ${\ensuremath{\sigma}}_{\ensuremath{\chi}N}=1.75\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}40}\text{ }\text{ }{\mathrm{cm}}^{2}$ at a 90% confidence level on the spin-independent cross section at a WIMP mass of 7 GeV before differentiating bulk signals from the surface backgrounds.
The CDEX collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold point-contact p-type germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact P+ electrode and the outside N+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both P+ and N+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.
We report results of a search for light Dark Matter WIMPs with CDEX-1 experiment at the China Jinping Underground Laboratory, based on 53.9 kg-days of data from a p-type point-contact germanium detector enclosed by a NaI(Tl) crystal scintillator as anti-Compton detector. The event rate and spectrum above the analysis threshold of 475 eVee are consistent with the understood background model. Part of the allowed regions for WIMP-nucleus coherent elastic scattering at WIMP mass of 6-20 GeV are probed and excluded. Independent of interaction channels, this result contradicts the interpretation that the anomalous excesses of the CoGeNT experiment are induced by Dark Matter, since identical detector techniques are used in both experiments.
Germanium ionization detectors with sensitivities as low as 100 eVee open new windows for the studies of neutrino and dark matter physics. The physics motivations of sub-keV germanium detectors are summarized. The amplitude of physics signals is comparable to those due to fluctuations of the pedestal electronic noise. Various experimental issues have to be attended before the promises of this new detector technique can be fully exploited. These include quenching factors, energy definition and calibration, signal triggering and selection together with their associated inefficiencies derivation. The efforts and results of an R&D program to address these challenges are presented.
The China Dark Matter Experiment reports results on light WIMP dark matter searches at the China Jinping Underground Laboratory with a germanium detector array with a total mass of 20 g. The physics threshold achieved is 172 eVee at 50% signal efficiency. With 0.784 kg-days of data, exclusion region on spin-independent coupling with the nucleon is derived, improving over our earlier bounds at WIMP mass less than 4.6 GeV.
The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of the predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within the GEANT4 program. Then the photon and electron background level in the energy region of interest (<10−2events·kg1·day−1·keV−1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible.