P-glycoprotein is an ATP-dependent plasma membrane multidrug transporter of broad specificity. A common chemical property of its substrates is that all are lipophilic. Using Hoechst 33342 as the substrate, we have previously shown that P-glycoprotein extracts the substrate directly from the lipid bilayer [Shapiro, A. B., Corder, A. B. & Ling, V. (1997) Eur. J. Biochem. 250, 115-121]. In this paper, we determined the leaflet of the plasma membrane from which P-glycoprotein extracts Hoechst 33342. The initial rate of Hoechst 33342 transport upon ATP addition to P-glycoprotein-rich inside-out plasma membrane vesicles decreased slightly with the amount of time previously elapsed for slow diffusion of Hoechst 33342 to the extracellular leaflet. This result is consistent with transport from the cytoplasmic leaflet. Fluorescence resonance energy transfer from donor Hoechst 33342 to acceptor 2-[6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]hexanoyl-sn-glycero- 3-phosphocholine (Nbd-C6-HPC) in the cytoplasmic leaflet was used to monitor the amount of Hoechst 33342 in the cytoplasmic leaflet versus time. The initial rate of decrease of the energy-transfer-related Nbd-C6-HPC fluorescence after ATP addition exceeded that of the Hoechst 33342 fluorescence and continued to decrease after decrease of the Hoechst 33342 fluorescence had ceased. These effects were consistent with transport of Hoechst 33342 from the cytoplasmic leaflet to the aqueous interior of the vesicles, followed by rebinding to the extracellular leaflet. This demonstrates that P-glycoprotein transports drugs from the cytoplasmic leaflet of the plasma membrane directly to the aqueous extracellular medium. This finding has implications for efforts to localize the drug-binding site(s) within P-glycoprotein.
Efflux of chemotherapy drugs by P-glycoprotein (P-gp) at the plasma membrane is thought to be a major cause of cancer multidrug resistance. In this report, we show by flow cytometry that P-gp also concentrates large amounts of 2 different drugs, Hoechst 33342 and daunorubicin, within a cytoplasmic compartment of multidrug resistant CHRC5 cells. A quantitative assay of Hoechst 33342 revealed that cytoplasmic sequestration by P-gp in CHRC5 cells accounted for about half of the amount of Hoechst 33342 accumulated by the drug-sensitive parental Aux BI cells. Daunorubicin sequestered in the cytoplasm of CHRC5 cells could be released by inhibiting P-gp function with cyclosporin A, resulting in cell death. A likely site of drug sequestration is P-gp-containing cytoplasmic vesicles, in which the P-gp is oriented so that drugs are transported and concentrated in the interior of the vesicles. P-gp was detected in the membranes of cytoplasmic vesicles of CHRC5 cells by confocal immunofluorescence microscopy and immunoelectron microscopy with anti-P-gp monoclonal antibodies (MAbs). Vesicular localization of daunorubicin was observed by epifluorescence microscopy. The origin and nature of the P-gp-containing vesicles are unknown, but they do not correspond to endocytic vesicles. Our results directly demonstrate that chemosensitizer-induced release of drugs sequestered in cytoplasmic vesicles by P-gp can be used to overcome multidrug resistance.
Mutations in KPC-2 and KPC-3 β-lactamase can confer resistance to the β-lactam/β-lactamase inhibitor antibacterial intravenous drug combination ceftazidime–avibactam, introduced in 2015. Avibactam was the first of the diazabicyclooctane class of non-β-lactam β-lactamase inhibitors to be approved for clinical use. The orally bioavailable prodrug ETX0282 of the diazabicyclooctane β-lactamase inhibitor ETX1317 is in clinical development in combination with the oral β-lactam prodrug cefpodoxime proxetil for use against complicated urinary tract infections. We investigated the effects of 3 ceftazidime–avibactam resistance mutations in KPC-3 (V240G, D179Y, and D179Y/T243M) on the ability of ETX1317 to overcome KPC-3-induced cefpodoxime resistance. Isogenic Escherichia coli strains, each expressing the wild-type or a mutant KPC-3 at similar levels, retained susceptibility to cefpodoxime–ETX1317 (1:2) with essentially identical minimal inhibitory concentrations of 0.125–0.25 μg/mL cefpodoxime. The KPC-3 mutations had little or no effect on the kinact/Ki values for inhibition by each of 3 diazabicyclooctanes: avibactam, durlobactam (ETX2514), and ETX1317. The KM values for hydrolysis of cefpodoxime were similar for all 4 variants, but the kcat values of the D179Y and D179Y/T243M variants were much lower than those of the wild-type and V240G mutant enzymes. All 4 KPC-3 variants formed stable, reversibly covalent complexes with ETX1317, but dissociation of ETX1317 was much slower from the D179Y and D179Y/T243M mutants than from the wild-type and V240G mutant enzymes. Thus, the KPC-3 variants examined here that cause resistance to ceftazidime–avibactam do not cause resistance to cefpodoxime–ETX1317.
The Gram-negative bacterial genus Burkholderia includes several hard-to-treat human pathogens: two biothreat species, Burkholderia mallei (causing glanders) and B. pseudomallei (causing melioidosis), and the B. cepacia complex (BCC) and B. gladioli, which cause chronic lung infections in persons with cystic fibrosis. All Burkholderia spp. possess an Ambler class A Pen β-lactamase, which confers resistance to β-lactams. The β-lactam-β-lactamase inhibitor combination sulbactam-durlobactam (SUL-DUR) is in clinical development for the treatment of Acinetobacter infections. In this study, we evaluated SUL-DUR for in vitro and in vivo activity against Burkholderia clinical isolates. We measured MICs of SUL-DUR against BCC and B. gladioli (n = 150), B. mallei (n = 30), and B. pseudomallei (n = 28), studied the kinetics of inhibition of the PenA1 β-lactamase from B. multivorans and the PenI β-lactamase from B. pseudomallei by durlobactam, tested for blaPenA1 induction by SUL-DUR, and evaluated in vivo efficacy in a mouse model of melioidosis. SUL-DUR inhibited growth of 87.3% of the BCC and B. gladioli strains and 100% of the B. mallei and B. pseudomallei strains at 4/4 μg/ml. Durlobactam potently inhibited PenA1 and PenI with second-order rate constant for inactivation (k2/K) values of 3.9 × 106 M-1 s-1 and 2.6 × 103 M-1 s-1 and apparent Ki (Kiapp) of 15 nM and 241 nM, respectively, by forming highly stable covalent complexes. Neither sulbactam, durlobactam, nor SUL-DUR increased production of PenA1. SUL-DUR demonstrated activity in vivo in a murine melioidosis model. Taken together, these data suggest that SUL-DUR may be useful as a treatment for Burkholderia infections.
ETX0282 is an orally bioavailable prodrug of the diazabicyclooctane serine β-lactamase inhibitor ETX1317. The combination of ETX0282 with cefpodoxime proxetil is in clinical trials as an oral therapy for complicated urinary tract infections caused by Enterobacterales. Earlier diazabicyclooctane β-lactamase inhibitors, such as avibactam and durlobactam, contain a sulfate moiety as the essential anionic group and are administered intravenously. In contrast, ETX1317 contains a fluoroacetate moiety, which is esterified with an isopropyl group in ETX0282 to provide high oral bioavailability. Previous studies of avibactam and durlobactam showed that covalent inhibition of certain β-lactamases is reversible due to the ability of the ring-opened inhibitors to recyclize and dissociate in their original form. We investigated the interaction of ETX1317 with several β-lactamases commonly found in relevant bacterial pathogens, including CTX-M-15, KPC-2, SHV-5, and TEM-1 from Ambler Class A; Pseudomonas aeruginosa AmpC and Enterobacter cloacae P99 from Class C, and OXA-48 from Class D. The second-order rate constants for inhibition (kinact/Ki) of these enzymes show that ETX1317 is intermediate in potency between durlobactam and avibactam. The partition ratios were all approximately 1, indicating that the inhibitor is not also a substrate of these enzymes. The rate constants for dissociation of the covalent complex (koff) were similar to those for durlobactam and avibactam. Acylation exchange experiments demonstrated that ETX1317 dissociated in its original form. No loss of mass from the inhibitor was observed in the covalent inhibitor-enzyme complexes.
DNA ligases are indispensable enzymes playing a critical role in DNA replication, recombination, and repair in all living organisms. Bacterial NAD+-dependent DNA ligase (LigA) was evaluated for its potential as a broad-spectrum antibacterial target. A novel class of substituted adenosine analogs was discovered by target-based high-throughput screening (HTS), and these compounds were optimized to render them more effective and selective inhibitors of LigA. The adenosine analogs inhibited the LigA activities of Escherichia coli, Haemophilus influenzae, Mycoplasma pneumoniae, Streptococcus pneumoniae, and Staphylococcus aureus, with inhibitory activities in the nanomolar range. They were selective for bacterial NAD+-dependent DNA ligases, showing no inhibitory activity against ATP-dependent human DNA ligase 1 or bacteriophage T4 ligase. Enzyme kinetic measurements demonstrated that the compounds bind competitively with NAD+. X-ray crystallography demonstrated that the adenosine analogs bind in the AMP-binding pocket of the LigA adenylation domain. Antibacterial activity was observed against pathogenic Gram-positive and atypical bacteria, such as S. aureus, S. pneumoniae, Streptococcus pyogenes, and M. pneumoniae, as well as against Gram-negative pathogens, such as H. influenzae and Moraxella catarrhalis. The mode of action was verified using recombinant strains with altered LigA expression, an Okazaki fragment accumulation assay, and the isolation of resistant strains with ligA mutations. In vivo efficacy was demonstrated in a murine S. aureus thigh infection model and a murine S. pneumoniae lung infection model. Treatment with the adenosine analogs reduced the bacterial burden (expressed in CFU) in the corresponding infected organ tissue as much as 1,000-fold, thus validating LigA as a target for antibacterial therapy.
We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467–474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β. We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467–474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β.