Nanolattice structure fabricated by two‐photon lithography (TPL) is a coupling of size‐dependent mechanical properties at micro/nano‐scale with structural geometry responses in wide applications of scalable micro/nano‐manufacturing. In this work, three‐dimensional (3D) polymeric nanolattices are initially fabricated using TPL, then conformably coated with an 80 nm thick high‐entropy alloy (HEA) thin film (CoCrFeNiAl 0.3 ) via physical vapor deposition (PVD). 3D atomic‐probe tomography (APT) reveals the homogeneous element distribution in the synthesized HEA film deposited on the substrate. Mechanical properties of the obtained composite architectures are investigated via in situ scanning electron microscope (SEM) compression test, as well as finite element method (FEM) at the relevant length scales. The presented HEA‐coated nanolattice encouragingly not only exhibits superior compressive specific strength of ≈0.032 MPa kg −1 m 3 with density well below 1000 kg m −3 , but also shows good compression ductility due to its composite nature. This concept of combining HEA with polymer lattice structures demonstrates the potential of fabricating novel architected metamaterials with tunable mechanical properties.
Mechanical metamaterials such as microlattices are an emerging kind of new materials that utilize the combination of structural enhancement effect by geometrical modification and the intrinsic properties of its material constituents. Prior studies have reported the mechanical properties of ceramic or metal-coated composite lattices. However, the scalable synthesis and characterization of high-entropy alloy (HEA) as thin film coating for such cellular materials have not been studied previously. In this work, stereolithography was combined with Radio Frequency (RF) magnetron sputtering to conformally deposit a thin layer (~800 nm) of CrMnFeCoNi HEA film onto a polymer template to produce HEA-coated three-dimensional (3D) core-shell microlattice structures for the first time. The presented polymer/HEA hybrid microlattice exhibits high specific compressive strength (~0.018 MPa kg-1 m3) at a density well below 1000 kg m-3, significantly enhanced stiffness (>5 times), and superior elastic recoverability compared to its polymer counterpart due to its composite nature. The findings imply that this highly scalable and effective route to synthesizing HEA-coated microlattices have the potential to produce novel metamaterials with desirable properties to cater specialized engineering applications.
Abstract Incorporating high-entropy alloys (HEAs) in composite microlattice structures yields superior mechanical performance and desirable functional properties compared to conventional metallic lattices. However, the modulus mismatch and relatively poor adhesion between the soft polymer core and stiff metallic film coating often results in film delamination and brittle strut fracture at relatively low strain levels (typically below 10%). In this work, we demonstrate that optimizing the HEA film thickness of a CoCrNiFe-coated microlattice completely suppresses delamination, significantly delays the onset of strut fracture (∼100% increase in compressive strain), and increases the specific strength by up to 50%. This work presents an efficient strategy to improve the properties of metal-composite mechanical metamaterials for structural applications.
An equiatomic CoCrFeMnNi high-entropy alloy (HEA) thin film coating has been successfully developed by high-vacuum Radio Frequency (RF) magnetron sputtering. The deposition of a smooth and homogenous thin film with uniformly distributed equiaxed nanograins (grain size ~ 10 nm) was achieved through this technique. The thin film coating exhibits a high hardness of 6.8 ± 0.6 GPa, which is superior compared to its bulk counterpart owing to its nanocrystalline structure. Furthermore, it also shows good ductility through nanoindentation, which demonstrates its potential to serve as an alternative to traditional transition metal nitride or carbide coatings for applications in micro-fabrication and advanced coating technologies.
The properties of mechanical metamaterials such as strength and energy absorption are often "locked" upon being manufactured. While there have been attempts to achieve tunable mechanical properties, state-of-the-art approaches still cannot achieve high strength/energy absorption with versatile tunability simultaneously. Herein, we fabricate for the first time, 3D architected organohydrogels with specific energy absorption that is readily tunable in an unprecedented range up to 5 × 103 (from 0.0035 to 18.5 J g−1) by leveraging on the energy dissipation induced by the synergistic combination of hydrogen bonding and metal coordination. The 3D architected organohydrogels also possess anti-freezing and non-drying properties facilitated by the hydrogen bonding between ethylene glycol and water. In a broader perspective, this work demonstrates a new type of architected metamaterials with the ability to produce a large range of mechanical properties using only a single material system, pushing forward the applications of mechanical metamaterials to broader possibilities.