An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Post-weld heat-treatment (PWHT) has been established as one of the cost-effective ways to improve the functional properties, namely shape memory and super-elastic effects (SME and SE), of laser-welded NiTi alloys. However, the functional performance of the laser-welded joint at different working temperatures has not been explored yet. The purpose of this study is to investigate the effect of different working temperatures on the functional properties of the laser-welded NiTi alloys before and after PWHT by applying cyclic deformation tests. Two laser-welded samples: as-welded and heat-treated sample (after PWHT at 350 °C or 623 K) were tested in this work at room temperature, 50 °C (or 323 K) and 75 °C (or 348 K) respectively. The samples were cyclically loaded and unloaded for 10 cycles up to 4 % strain. The critical stress to induce the martensitic transformation and the residual strain after the cyclic tests were recorded. The results indicate that the heat-treated sample exhibited better functional properties than the as-welded sample at room temperature and 50 °C (or 323 K). However, both the as-welded and heat-treated samples failed in the cyclic tests at 75 °C (or 348 K). These findings are important to determine the feasible working temperature range for the laser-welded NiTi components to exhibit desirable functional properties in engineering applications involving cyclic loading.
Device associated infection (DAI) is recognized as a worldwide health challenge in total joint replacement (TJR). Bacteria exhibit very strong antibiotic tolerance when they attach to a device and form a biofilm and thus DAI is difficult to treat. In this study, a one-step, clean (no chemicals or additional materials involved) and effective surface engineering approach via laser surface treatment (LST) to tackle the DAI challenge is reported. Commercially pure (CP) Ti were laser-treated in open air using continuous wave (CW) fibre laser. The laser-treated CP Ti was tested against five bacterial species including Gram positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram negative (Pseudomonas aeruginosa, Escherichia coli and Proteus mirabilis). Live/Dead staining and image analysis results indicated that LST can significantly reduce biofilm coverage of the five tested bacterial species on the CP Ti surfaces. Overall biofilm coverage as a percentage of the surface reduced after laser treatment averaging from 4.24 % to 17.4 %. This meant that relative to the untreated surface, biofilm coverage was reduced after laser treatment, ranging from 84.9 % to 95.6 % across the five species. Furthermore, cytotoxicity results (using MTT assay) showed that the laser-treated CP Ti is non-toxic across both L929 fibroblast and RAW macrophage cell lines. Surface properties after LST were investigated using WLI and AFM (measuring micro-/nano-surface roughness and topography) as well as ToF-SIMS (measuring surface chemistry and oxide thickness), respectively. The cross-sectional microstructure at the surface was imaged using SEM and analysed by XRD, whilst the surface wettability was measured using sessile drop method. To summarise, the reduction of biofilm coverage can be attributed to the favourable changes in surface roughness and topography together with the increased concentration of oxides at the topmost surface after LST.