The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.
The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems.
Volumetric structural magnetic resonance imaging (MRI) is commonly used to determine the extent of neuronal loss in aging, indicated by cerebral atrophy. The brain, however, exhibits other biophysical characteristics such as mechanical properties, which can be quantified with magnetic resonance elastography (MRE). MRE is an emerging noninvasive imaging technique for measuring viscoelastic tissue properties, proven to be sensitive metrics of neural tissue integrity, as described by shear stiffness, μ and damping ratio, ξ parameters. The study objective was to evaluate global and regional MRE parameter differences between young (19-30 years, n = 12) and healthy older adults (66-73 years, n = 12) and to assess whether MRE measures provide additive value over volumetric magnetic resonance imaging measurements. We investigated the viscoelasticity of the global cerebrum and 6 regions of interest (ROIs) including the amygdala, hippocampus, caudate, pallidum, putamen, and thalamus. In older adults, we found a decrease in μ in all ROIs, except for the hippocampus, indicating widespread brain softening; an effect that remained significant after controlling for ROI volume. In contrast, the relative viscous-to-elastic behavior of the brain ξ did not differ between age groups, suggesting a preservation of the organization of the tissue microstructure. These data support the use of MRE as a novel imaging biomarker for characterizing age-related differences to neural tissue not captured by volumetric imaging alone.
Developing preclinical MRE techniques that are comparable to human MRE is important for translational studies. This pilot study investigates the efficacy of the nonlinear inversion algorithm on rat brain MRE data. Whole-brain MRE scans were performed on female, Long-Evans rats using a custom MRE-EPI sequence and piezoelectric actuator with a resolution of 0.25 mm isotropic and with 600 Hz vibration. NLI parameters were adjusted for brain size and frequency. The resulting shear stiffness and damping ratio maps exhibited strong contrast between different anatomical regions. These results validate the use of NLI in preclinical MRE settings.
This study combined multi-excitation MR Elastography (ME-MRE) with a transversely isotropic inversion nonlinear inversion algorithm and diffusion tensor imaging (DTI) fiber directions to investigate anisotropic white matter tract integrity in aging. Participants were 5 older adults and 17 young adults. MRE outcomes include substrate shear modulus, μ, shear anisotropy, φ, tensile anisotropy, ζ, and DTI measures were also examined. Shear and tensile anisotropies were significantly different in the Corona Radiata and Superior Longitudinal Fasciculus. Diffusion measures were significantly different between groups in most tracts. These results suggest sensitivity of anisotropic properties to biological changes along white matter tracts in aging.
This study demonstrates the use of magnetization preparation for MR elastography in combination with a 3D GRE stack of spirals pulse sequence. By decoupling the motion encoding from the readouts, rapid encoding strategies, such as 3D GRE, can be used. MRE images, displacement, and inverted elastograms are obtained on in vivo human brain. 3D GRE readouts with EMPIRE motion encoding can acquire a complete MRE dataset 33% faster than 2D SE-EPI with similar parallel imaging acceleration factors.
This study combined multiexcitation MRE (ME-MRE), and multifrequency MRE (MF-MRE) with a transversely isotropic nonlinear inversion (TINLI) and axonal fiber directions from diffusion tensor imaging to investigate anisotropic and frequency-dependent material properties simultaneously. These preliminary results show that multifrequency-TINLI MRE can be readily applied to in vivo human data at distinct frequencies.
Abstract The use of vanes in grooved channels for heat transfer enhancement has received unprecedented attention in recent years due to applications in high-performance heat exchangers and electronics cooling. The current work focuses on characterizing the vortex formation around heated elements in grooved channels with curved vanes. A computational model is developed to examine the effect that the vortices have on heat transfer and system performance for a range of Reynolds numbers of 100 to 800. These vortices explain the previously observed characteristics in system performance for geometries with the use of curved vanes. At a Reynolds number of 400 these vortices inhibit heat transfer and increase pressure drop in the channel resulting in significant decreases in system performance. In addition, a sensitivity analysis was performed for the size and location of the baffle at a high Reynolds number of 800. Portions of this work were supported by NASA under Cooperative Agreement NCC5-581(DLH).