Abstract A novel integrated pilot-scale A-stage high rate activated sludge, B-stage short-cut biological nitrogen removal and side-stream enhanced biological phosphorus removal (A/B-shortcut N- S2EBPR) process for treating municipal wastewater was demonstrated with the aim to achieve simultaneous and carbon- and energy-efficient N and P removal. In this studied period, an average of 7.62 ± 2.17 mg-N/L nitrite accumulation was achieved through atypical partial nitrification without canonical known NOB out-selection. Network analysis confirms the central hub of microbial community as Nitrospira, which was one to two orders of magnitude higher than canonical aerobic oxidizing bacteria (AOB) in a B-stage nitrification tank. The contribution of comammox Nitrospira as AOB was evidenced by the increased amoB/nxr ratio and higher ammonia oxidation activity. Furthermore, oligotyping analysis of Nitrospira revealed two dominant sub-clusters (microdiveristy) within the Nitrospira. The relative abundance of oligotype II, which is phylogenetically close to Nitrospira_midas_s_31566, exhibited a positive correlation with nitrite accumulation in the same operational period, suggesting its role as comammox Nitrospira. Additionally, the phylogenetic investigation suggested that heterotrophic organisms from the family Comamonadacea and the order Rhodocyclaceae embedding ammonia monooxygenase and hydroxylamine oxidase may function as heterotrophic nitrifiers. This is the first study that elucidated the impact of integrating the S2EBPR on nitrifying populations with implications on short-cut N removal. The unique conditions in the side-stream reactor, such as low ORP, favorable VFA concentrations and composition, seemed to exert different selective forces on nitrifying populations from those in conventional biological nutrient removal processes. The results provide new insights for integrating EBPR with short-cut N removal process for mainstream wastewater treatment.
This study evaluated startup strategies for mainstream polishing anammox moving bed biofilm reactors (MBBRs) without anammox bacterial (AMX) biomass inoculation. Two types of startups were tested: anammox only (no external carbon addition) and partial denitrification/anammox (PdNA) with glycerol addition. Reactors were started with either virgin carriers or carriers with a preliminary biofilm from a mainstream aerobic integrated fixed-film activated sludge (IFAS) process. Three pilot-scale startups were completed under the following conditions: anammox-only with preliminary biofilm carriers, PdNA with preliminary biofilm carriers, and PdNA with virgin carriers. AMX presence was confirmed via quantitative polymerase chain reaction (qPCR) after 57, 57, and 77 days, respectively. Prior to AMX detection, average influent concentrations of ammonia and nitrite ranged from 1.7-2.7 mg/L and 0.98-1.8 mg/L, respectively. This study demonstrated that AMX can be grown on carriers without AMX seeding under mainstream conditions (temperature 17-29°C, low ammonia and nitrite), regardless of whether nitrite came from upstream or partial denitrification within the reactor. This study also showed that using preliminary biofilm carriers can decrease startup time by approximately 1 month. These results address critical questions for moving mainstream anammox processes to full-scale implementation, and suggest that PdNA MBBRs are feasible and sustainable for full-scale ammonia, nitrate, and nitrite polishing to meet stringent total nitrogen requirements. PRACTITIONER POINTS: This research will help utilities develop methods for starting up mainstream anammox MBBRs without the barrier of anammox biomass seeding. Preliminary biofilm carriers accelerated startup time in a PdNA MBBR, but a virgin carrier reactor started up in a similar timeframe, contrary to expectations. Also, contrary to expectations, high concentrations of ammonia and nitrite are not necessary for startup of an anammox or PdNA MBBR.
Shortcut nitrogen removal (SNR) reduces aeration, carbon, and alkalinity requirements, but the magnitude of this benefit is often overstated. SNR allows for upstream carbon diversion and anammox processes allow for significant WRRF capacity gains.
The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes.This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions.ISBN: 9781789061789 (Paperback)ISBN: 9781789061796 (eBook)ISBN: 9781789061802 (ePUB)
To meet the growing interest in the development of innovative biological nutrient removal (BNR) alternatives for energy neutrality, resource recovery, and decarbonization, the adsorption/bio-oxidation (A/B) process has been widely studied for carbon capture and shortcut nitrogen (N) removal, while limited research has focused on incorporating enhanced biological phosphorus (P) removal (EBPR), mainly due to the differential carbon usage characteristics of functionally relevant microorganisms. Here, a full-scale pilot testing with an integrated system combining A-stage high-rate activated sludge (HRAS) with B-stage partial (de)nitrification/anammox and side-stream EBPR (HRAS-P(D)N/A-S2EBPR) was conducted treating real municipal wastewater. The results demonstrated that, despite the low influent carbon load, the B-stage P(D)N-S2EBPR system achieved effective and stable P removal performance, especially when the volatile fatty acid (VFA) load from A-stage was elevated. Sludge fermentation in both A-stage and B-stage promoted carbon redistribution and likely provided more competitive advantages for ammonium-oxidizing bacteria and polyphosphate accumulating organisms, leading to carbon-efficient shortcut N removal mainly through partial nitrification pathway and influent carbon-independent EBPR simultaneously. Exposure to high VFA levels was considered a potential selection factor for the suppression of nitrite-oxidizing bacteria in the system. The involvement of internal carbon-accumulating organisms would potentially play an important role in endogenous denitrification. This study provided new insights into the effects of incorporating side-stream EBPR into the A/B process on microbial ecology, metabolic activities, and system performance.