Identify and characterize circulating metabolite profiles associated with adiposity to inform precision medicine.Untargeted plasma metabolomic profiles in the Insulin Resistance Atherosclerosis Family Study (IRASFS) Mexican American cohort (n = 1108) were analyzed for association with anthropometric (body mass index, BMI; waist circumference, WC; waist-to-hip ratio, WHR) and computed tomography measures (visceral adipose tissue, VAT; subcutaneous adipose tissue, SAT; visceral-to-subcutaneous ratio, VSR) of adiposity. Genetic data, inclusive of genome-wide array-based genotyping, whole exome sequencing (WES) and whole genome sequencing (WGS), were evaluated to identify the genetic contributors. Phenotypic and genetic association signals were replicated across ancestries. Transcriptomic data were analyzed to explore the relationship between genetic and metabolomic data.A partially characterized metabolite, tentatively named metabolonic lactone sulfate (X-12063), was consistently associated with BMI, WC, WHR, VAT, and SAT in IRASFS Mexican Americans (PMA <2.02 × 10-27). Trait associations were replicated in IRASFS African Americans (PAA < 1.12 × 10-07). Expanded analyses revealed associations with multiple phenotypic measures of cardiometabolic health, e.g. insulin sensitivity (SI), triglycerides (TG), diastolic blood pressure (DBP) and plasminogen activator inhibitor-1 (PAI-1) in both ancestries. Metabolonic lactone sulfate levels were heritable (h2 > 0.47), and a significant genetic signal at the ZSCAN25/CYP3A5 locus (PMA = 9.00 × 10-41, PAA = 2.31 × 10-10) was observed, highlighting a putative functional variant (rs776746, CYP3A5∗3). Transcriptomic analysis in the African American Genetics of Metabolism and Expression (AAGMEx) cohort supported the association of CYP3A5 with metabolonic lactone sulfate levels (PFDR = 6.64 × 10-07).Variant rs776746 is associated with a decrease in the transcript levels of CYP3A5, which in turn is associated with increased metabolonic lactone sulfate levels and poor cardiometabolic health.
Calcium antagonists are among the most commonly used cardiovascular drugs. They have received regulatory approval for their antianginal and antihypertensive actions. While these agents provide appreciable improvement in symptoms in patients with angina pectoris, they have not yet been shown to prevent fatal and non-fatal cardiovascular events. Indeed, evidence suggests an adverse effect in survivors of myocardial infarction and in patients with angina.1
Speculation about a neuroprotective effect of calcium antagonists is based on the observation of an excessive influx of calcium at the time of neuronal death. This postulated mechanism, together with vasodilation, formed the theoretical basis for a clinical trial in patients undergoing replacement of a cardiac valve. It has been documented that patients placed on cardiopulmonary bypass are subject to arterial microemboli.2 The recognised clinical consequences of …
The frequency of remission of type 2 diabetes achievable with lifestyle intervention is unclear.
Objective
To examine the association of a long-term intensive weight-loss intervention with the frequency of remission from type 2 diabetes to prediabetes or normoglycemia.
Design, Setting, and Participants
Ancillary observational analysis of a 4-year randomized controlled trial (baseline visit, August 2001–April 2004; last follow-up, April 2008) comparing an intensive lifestyle intervention (ILI) with a diabetes support and education control condition (DSE) among 4503 US adults with body mass index of 25 or higher and type 2 diabetes.
Interventions
Participants were randomly assigned to receive the ILI, which included weekly group and individual counseling in the first 6 months followed by 3 sessions per month for the second 6 months and twice-monthly contact and regular refresher group series and campaigns in years 2 to 4 (n=2241) or the DSE, which was an offer of 3 group sessions per year on diet, physical activity, and social support (n=2262).
Main Outcome Measures
Partial or complete remission of diabetes, defined as transition from meeting diabetes criteria to a prediabetes or nondiabetic level of glycemia (fasting plasma glucose <126 mg/dL and hemoglobin A1c <6.5% with no antihyperglycemic medication).
Results
Intensive lifestyle intervention participants lost significantly more weight than DSE participants at year 1 (net difference, −7.9%; 95% CI, −8.3% to −7.6%) and at year 4 (−3.9%; 95% CI, −4.4% to −3.5%) and had greater fitness increases at year 1 (net difference, 15.4%; 95% CI, 13.7%-17.0%) and at year 4 (6.4%; 95% CI, 4.7%-8.1%) (P < .001 for each). The ILI group was significantly more likely to experience any remission (partial or complete), with prevalences of 11.5% (95% CI, 10.1%-12.8%) during the first year and 7.3% (95% CI, 6.2%-8.4%) at year 4, compared with 2.0% for the DSE group at both time points (95% CIs, 1.4%-2.6% at year 1 and 1.5%-2.7% at year 4) (P < .001 for each). Among ILI participants, 9.2% (95% CI, 7.9%-10.4%), 6.4% (95% CI, 5.3%-7.4%), and 3.5% (95% CI, 2.7%-4.3%) had continuous, sustained remission for at least 2, at least 3, and 4 years, respectively, compared with less than 2% of DSE participants (1.7% [95% CI, 1.2%-2.3%] for at least 2 years; 1.3% [95% CI, 0.8%-1.7%] for at least 3 years; and 0.5% [95% CI, 0.2%-0.8%] for 4 years).
Conclusions
In these exploratory analyses of overweight adults, an intensive lifestyle intervention was associated with a greater likelihood of partial remission of type 2 diabetes compared with diabetes support and education. However, the absolute remission rates were modest.
Abstract Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To provide new insights in the biology of sleep-associated adverse lipid profile, we conducted multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identified 49 novel lipid loci, and 10 additional novel lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identified new gene-sleep interactions for known lipid loci such as LPL and PCSK9 . The novel gene-sleep interactions had a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explained 4.25% of the variance in triglyceride concentration. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.