As scientific simulations and experiments move toward extremely large scales and generate massive amounts of data, the data access performance of analytic applications becomes crucial. A mismatch often happens between write and read patterns of data accesses, typically resulting in poor read performance. Data layout reorganization has been used to improve the locality of data accesses. However, current data reorganizations are static and focus on generating a single (or set of) optimized layouts that rely on prior knowledge of exact future access patterns. We propose a framework that dynamically recognizes the data usage patterns, replicates the data of interest in multiple reorganized layouts that would benefit common read patterns, and makes runtime decisions on selecting a favorable layout for a given read pattern. This framework supports reading individual elements and chunks of a multi-dimensional array of variables. Our pattern-driven layout selection strategy achieves multi-fold speedups compared to reading from the original dataset.
Frameworks that facilitate runtime data sharingacross multiple applications are of great importance for scientificdata analytics. Although existing frameworks work well overuniform mesh data, they can not effectively handle adaptive meshrefinement (AMR) data. Among the challenges to construct anAMR-capable framework include: (1) designing an architecturethat facilitates online AMR data management, (2) achievinga load-balanced AMR data distribution for the data stagingspace at runtime, and (3) building an effective online indexto support the unique spatial data retrieval requirements forAMR data. Towards addressing these challenges to supportruntime AMR data sharing across scientific applications, wepresent the AMRZone framework. Experiments over real-worldAMR datasets demonstrate AMRZone's effectiveness at achievinga balanced workload distribution, reading/writing large-scaledatasets with thousands of parallel processes, and satisfyingqueries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to16384 cores, in the best case, our framework achieves a 46% performance improvement.
Improving read performance is one of the major challenges with speeding up scientific data analytic applications. Utilizing the memory hierarchy is one major line of researches to address the read performance bottleneck. Related methods usually combine solide-state-drives(SSDs) with dynamic random-access memory(DRAM) and/or parallel file system(PFS) to mitigate the speed and space gap between DRAM and PFS. However, these methods are unable to handle key performance issues plaguing SSDs, namely read contention that may cause up to 50% performance reduction. In this paper, we propose a framework that exploits the memory hierarchy resource to address the read contention issues involved with SSDs. The framework employs a general purpose online read algorithm that able to detect and utilize memory hierarchy resource to relieve the problem. To maintain a near optimal operating environment for SSDs, the framework is able to orchastrate data chunks across different memory layers to facilitate the read algorithm. Compared to existing tools, our framework achieves up to 50% read performance improvement when tested on datasets from real-world scientific simulations.
Analyses of large simulation data often concentrate on regions in space and in time that contain important information. As simulations adopt Adaptive Mesh Refinement (AMR), the data records from a region of interest could be widely scattered on storage devices and accessing interesting regions results in significantly reduced I/O performance. In this work, we study the organization of block-structured AMR data on storage to improve performance of spatio-temporal data accesses. AMR has a complex hierarchical multi-resolution data structure that does not fit easily with the existing approaches that focus on uniform mesh data. To enable efficient AMR read accesses, we develop an in situ data layout optimization framework. Our framework automatically selects from a set of candidate layouts based on a performance model, and reorganizes the data before writing to storage. We evaluate this framework with three AMR datasets and access patterns derived from scientific applications. Our performance model is able to identify the best layout scheme and yields up to a 3X read performance improvement compared to the original layout. Though it is not possible to turn all read accesses into contiguous reads, we are able to achieve 90% of contiguous read throughput with the optimized layouts on average.
The process of scientific data analysis in high-performance computing environments has been evolving along with the advancement of computing capabilities. With the onset of exascale computing, the increasing gap between compute performance and I/O bandwidth has rendered the traditional method of post-simulation processing a tedious process. Despite the challenges due to increased data production, there exists an opportunity to benefit from "cheap" computing power to perform query-driven exploration and visualization during simulation time. To accelerate such analyses, applications traditionally augment raw data with large indexes, post-simulation, which are then repeatedly utilized for data exploration. However, the generation of current state-of-the-art indexes involve a compute- and memory-intensive processing, thus rendering them inapplicable in an in situ context. In this paper we propose DIRAQ, a parallel in situ, in network data encoding and reorganization technique that enables the transformation of simulation output into a query-efficient form, with negligible runtime overhead to the simulation run. DIRAQ begins with an effective core-local, precision-based encoding approach, which incorporates an embedded compressed index that is 3 -- 6x smaller than current state-of-the-art indexing schemes. DIRAQ then applies an in network index merging strategy, enabling the creation of aggregated indexes ideally suited for spatial-context querying that speed up query responses by up to 10x versus alternative techniques. We also employ a novel aggregation strategy that is topology-, data-, and memory-aware, resulting in efficient I/O and yielding overall end-to-end encoding and I/O time that is less than that required to write the raw data with MPI collective I/O.
Many scientists rely on indexing and query to identify trends and anomalies within extreme-scale scientific data. Compressed bitmap indexing (e.g., FastBit) is the go-to indexing method for many scientific datasets and query workloads. Recently, the ALACRITY compressed inverted index was shown as a viable alternative approach. Notably, though FastBit and ALACRITY employ very different data structures (inverted list vs. bitmap) and binning methods (bit-wise vs. decimal-precision), close examination reveals marked similarities in index structure.