The promoter region of telomerase reverse transcriptase (TERTp) and isocitrate dehydrogenase (IDH) have been regarded as biomarkers with distinct clinical and phenotypic features. Investigated the possible correlations between tumor location and genetic alterations would enhance our understanding of gliomagenesis and heterogeneity of glioma. We examined mutations of TERTp and IDH by direct sequencing and fluorescence in-situ hybridization in a cohort of 225 grades II and III diffuse gliomas. Correlation analysis between molecular markers and tumor locations was performed by Chi-square tests/Fisher's exact test and multivariate logistic regression analysis. We found gliomas in frontal lobe showed higher frequency of TERTp mutation (P=0.0337) and simultaneously mutations of IDH and TERTp (IDH (mut)-TERTp(mut)) (P=0.0281) than frequency of biomarkers mutation of tumors in no-Frontal lobes, while lower frequency of TERTp mutation (P<0.0001) and simultaneously wild type of IDH and TERTp (IDH (wt)-TERTp(wt)) (P<0.0001) in midline than no-midline lobes. Logistic regression analysis indicated that locations of tumors associated with TERTp mutation (OR=0.540, 95% CI 0.324-0.900, P=0.018) and status of combinations of IDH and TERTp (IDH (mut)-TERTp (mut) vs. IDH (wt)-TERTp (wt) OR=0.162, 95% CI 0.075-0.350, P<0.001). In conclusion, grades II and III gliomas harboring TERTp mutation were located preferentially in the frontal lobe and rarely in midline. Association of IDH-TERTp status and tumor location suggests their potential values in molecular classification of grades II and III gliomas.
The causal relationship between neurogenesis and the recovery of poststroke cognitive function has not been properly explored. The current study aimed to determine whether depleting neuroprogenitor cells (NPCs) affects poststroke functional outcome in nestin-δ-HSV-TK-EGFP transgenic mice, in which the expression of a truncated viral thymidine kinase gene and EGFP was restricted to nestin-expressing NPCs. Ganciclovir (GCV; 200 mg/kg/d) or saline was continuously administered via osmotic pumps in mice for 4 weeks before the induction of experimental stroke. Both baseline and stroke-induced type 1 and type 2 NPCs were conditionally ablated. GCV eliminated NPCs in a duration-dependent fashion, but it did not attenuate the genesis of astroglia or oligodendrocytes in the peri-infarct cortex, nor did it affect infarct size or cerebral blood reperfusion after stroke. Transgenic stroke mice given GCV displayed impaired spatial learning and memory in the Barnes maze test compared with saline control or wild-type stroke mice given GCV, suggesting a contributing role of stroke-induced neurogenesis in the recovery of cognitive function. However, there was no significant difference in poststroke motor function between transgenic mice treated with GCV and those treated with vehicle, despite a significant ablation of NPCs in the subventricular zone of the former. Furthermore, nestin-δ-HSV-TK-EGFP mice treated with GCV had fewer retrogradely labeled neurons in the entorhinal cortex (EC) when injected with the polysynaptic viral marker PRV614 in the dentate gyrus (DG), suggesting that there might be reduced synaptic connectivity between the DG and EC following ablation of NPCs, which may contribute to impaired poststroke memory function.
Abstract N6-methyladenosine (m6A) is the most common modification on endogenous RNA transcripts in mammalian cells. Currently, the lack of precise single-nucleotide RNA modification tools makes it challenging to understand the relationship between site-specific RNA methylation and the corresponding phenotypic outcomes. Here, we developed a bidirectional dCasRx epitranscriptome editing platform composed of a nucleus-localized dCasRx conjugated with either a methyltransferase, METTL3, or a demethylase, ALKBH5, to manipulate methylation events at targeted m6A sites in HEK293T and glioma stem cells. This platform specifically and efficiently edited m6A modifications at targeted sites, modulating both gene expression and cell proliferation. We then employed the dCasRx epitranscriptomic editor to further elucidate the molecular function of m6A-binding proteins YTH (DF1, DF2, DF3) family and found that the YTH paralogs act together to mediate RNA degradation. These findings collectively demonstrate that the dCasRx epitranscriptome perturbation platform reported in this study can be employed as site-specific m6A editors for delineating the functional roles of individual m6A modifications in the mammalian epitranscriptome.
// Jian Shi 1 , Yong-Jie Wang 1 , Chong-Ran Sun 1 , Bin Qin 1 , Yang Zhang 1 and Gao Chen 1 1 Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China Correspondence to: Jian Shi, email: shijian201511@126.com Gao Chen, email: d-chengao@zju.edu.cn Keywords: lncHERG; proliferation; migration; miR-940; glioblastoma Received: September 29, 2017 Accepted: October 27, 2017 Published: November 14, 2017 ABSTRACT Long noncoding RNAs have recently been proven to regulate tumorgenesis in many cancers. However, their biological functions in glioblastoma remain largely unknown. Here we found an uncharacteristic lncRNA lncHERG that is highly expressed in human glioblastoma (GBM). We found that lncHERG knockdown inhibited cell proliferation, migration and invasion in glioblastoma in vitro and in vivo . Moreover, the higher expression of lncHERG in patients with glioblastoma indicated lower survival rate and poorer prognosis. Mechanistically, we found that lncHERG can serve as a sponge for miR-940 which is a tumor suppressor in cervical cancer and whose function has not been defined in glioblastoma. We showed that miR-940 was down-regulated in glioblastoma tissues compared to peritumor tissues. LncHERG knockdown impaired cell proliferation, migration and invasion while inhibition of miR-940 in the meantime reversed this trend. In conclusion, our study highlights the essential role of lncHERG in glioblastoma by acting as a competing endogenous RNA of miR-940, which may serve as a new prognostic biomarker in glioblastoma.