ABSTRACT Sources of Mycobacterium bovis contamination remain unclear for many cases of animal and human disease. A major limitation is the lack of sufficiently informative or epidemiologically well evaluated molecular methods for typing. Here, we report an evaluation of a high-throughput method based on 29 mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) loci to genotype 127 M. bovis isolates from cattle from 77 different Belgian farms, representative of a nationwide collection obtained from 1995 to 2003. MIRU-VNTR stability was demonstrated by analyzing a series of 74 isolates in total, obtained from different animals from a single farm or from different farms with an identified epidemiological link. The genotyping results and the genotypic diversity ( h ) were compared with those obtained by IS 6110 restriction fragment length polymorphism (RFLP) analysis and spoligotyping. Among 68 isolates with no known epidemiological link, MIRU-VNTR typing discriminated better than either RFLP analysis or spoligotyping, with isolates taken individually (32 versus 16 and 17 genotypes; h = 0.91 versus 0.73 and 0.85, respectively) or in combination (32 versus 28 genotypes; h = 0.91 versus 0.92). Maximal resolution was already achieved with a subset of 9 loci. The observed congruence of the genetic relationships based on IS 6110 RFLP analysis, spoligotyping, and MIRU-VNTR markers is consistent with a clonal population structure of M. bovis. These results support MIRU-VNTR typing as a convenient and discriminatory technique for analysis of the population structure of M. bovis in much greater detail and for addressing some still unresolved issues in the epidemiology of the pathogen.
De Beer et al. ([1][1]) report that the percentages of instantly complete 24-locus variable-number tandem-repeat (VNTR) genotypes obtained in their hands rose from 72.3% when using the triplex-based Genoscreen kit until November 2011 to 84.7% afterwards using a modified version of our original
ABSTRACT Rifampicin heteroresistance – where rifampicin-resistant and -susceptible tuberculosis (TB) bacilli co-exist – may result in failed standard TB treatment and potential spread of rifampicin-resistant strains. Detection of rifampicin heteroresistance in routine rapid diagnostic tests (RDTs) allows for patients to receive prompt and effective multidrug-resistant-TB treatment, and may improve rifampicin-resistant TB control. The limit of detection (LOD) of rifampicin heteroresistance for phenotypic drug susceptibility testing by the proportion method is 1%, yet is insufficiently documented for RDTs. We therefore aimed to determine, for the four RDTs (XpertMTB/RIF, XpertMTB/RIF Ultra, GenoTypeMTBDR plus v2.0, and GenoscholarNTM+MDRTBII), the LOD per probe and mutation, validated by colony-forming-unit-counting and targeted deep sequencing (Deeplex-MycTB). We selected one rifampicin-susceptible and four rifampicin-resistant strains, with mutation D435V, H445D, H445Y, and S450L respectively, mixed them in various proportions in triplicate, tested them with each RDT, and determined the LODs per mutation type. Deeplex-MycTB revealed concordant proportions of the minority resistant variants in the mixtures. The Deeplex-MycTB-validated-LODs ranged from 20-80% for XpertMTB/RIF, 20-70% for Xpert Ultra, 5-10% for GenoTypeMTBDR plus v2.0, and 1-10% for GenoscholarNTM+MTBII for the different mutations. Deeplex-MycTB, GenoTypeMTBDR plus v2.0, and GenoscholarNTM+MDRTBII, provide explicit information on rifampicin heteroresistance for the most frequently detected mutations. Classic Xpert and Ultra report rifampicin heteroresistance as rifampicin resistance, while Ultra may denote rifampicin heteroresistance through ‘mixed patterns’ of wild-type and mutant melt probe melt peak temperatures. Overall, our findings inform end-users that the threshold for reporting resistance in case of rifampicin heteroresistance is the highest for Classic Xpert and Ultra, to resolve phenotypic and genotypic discordant rifampicin-resistant TB results.
ABSTRACT Tuberculosis (TB) remains an immense public health problem in the Republic of Korea despite a more than fivefold decrease in the prevalence of the disease over the last 3 decades. The rise in drug-resistant TB has compounded the situation. We analyzed 208 clinical isolates of M. tuberculosis from the National Masan Tuberculosis Hospital by spoligotyping, IS 6110 restriction fragment length polymorphism (RFLP), and 24-locus-based mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing to assess the diversity and transmission dynamics of the tubercle bacilli in the Republic of Korea. The majority of the isolates (97.1%) belonged to the Beijing genotype. Cluster analysis by MIRU-VNTR yielded a low clustering rate of 22.3%, with most of the clusters comprising isolates with diverse drug resistance patterns. The discriminatory capacity of the typing methods was high for RFLP and MIRU-VNTR (allelic diversity [ h ] = 0.99) but low for spoligotyping ( h = 0.31). Although analysis of 19 MIRU-VNTR loci was needed to achieve maximum discrimination, an informative set of 8 loci (960, 1955, 2163b, 2165, 2996, 3192, 4052, and 4348) ( h = 0.98) that was able to differentiate most of the closely related strains was identified. These findings suggest that 24-locus-based MIRU-VNTR typing is a likely suitable alternative to RFLP to differentiate clinical isolates in this setting, which is dominated by M. tuberculosis Beijing strains. Within the study limits, our results also suggest that the problem of drug-resistant TB in the Republic of Korea may be largely due to acquired resistance as opposed to transmission.
Among the 130 species that constitute the genus Mycobacterium, the great majority are harmless saprophytes. However, a few species have very efficiently adapted to a pathogenic lifestyle. Among them are two of the most important human pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, and one emerging pathogen, Mycobacterium ulcerans. Their slow growth, virulence for humans and particular physiology make these organisms very difficult to work with, however the need to develop new strategies in the fight against these pathogens requires a clear understanding of their genetic and physiological repertoires and the mechanisms that have contributed to their evolutionary success. The rapid development of mycobacterial genomics following the completion of the Mycobacterium tuberculosis genome sequence provides now the basis for finding the important factors distinguishing pathogens and non-pathogens. In this chapter we will therefore present some of the major insights that have been gained from recent studies, with focus on the roles played by various evolutionary processes in shaping the structure of mycobacterial genomes and pathogen populations.
The incidence of nosocomial infections due to carbapenem-resistant Klebsiella pneumoniae is increasing worldwide. Whole-genome sequencing (WGS) can help elucidate the transmission route of nosocomial pathogens.We combined WGS and epidemiological data to analyze an outbreak of New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae that occurred in 2 Belgian hospitals situated about 50 miles apart. We characterized 74 NDM-producing K. pneumoniae isolates (9 from hospital A, 24 from hospital B, and 41 contemporary isolates from 15 other Belgian hospitals) using pulsed-field gel electrophoresis and WGS.A K. pneumoniae sequence type 716 clone was identified as being responsible for the outbreak with all 9 strains from hospital A and 20 of 24 from hospital B sharing a unique pulsotype and being clustered together at WGS (compared with 1 of 41 isolates from other Belgian hospitals). We identified the outpatient clinic of hospital B as the probable bridging site between the hospitals after combining epidemiological, phylogenetic, and resistome data. We also identified the patient who probably caused the transmission. In fact, all but 1 strain from hospital A carried a Tn1331-like transposon, whereas none of the hospital B isolates did. The patient from hospital A who did not have the Tn1331-like transposon was treated at the outpatient clinic of hospital B on the same day as the first NDM-producing K. pneumoniae-positive patient from hospital B.The results from our WGS-guided investigation highlight the importance of implementing adequate infection control measures in outpatient settings, especially when healthcare delivery moves from acute care facilities to outpatient clinics.
ABSTRACT The successful use of DNA amplification for the detection of tuberculous mycobacteria crucially depends on the choice of the target sequence, which ideally should be present in all tuberculous mycobacteria and absent from all other bacteria. In the present study we developed a PCR procedure based on the intergenic region (IR) separating two genes encoding a recently identified mycobacterial two-component system named SenX3-RegX3. The senX3-regX3 IR is composed of a novel type of repetitive sequence, called mycobacterial interspersed repetitive units (MIRUs). In a survey of 116 Mycobacterium tuberculosis strains characterized by different IS 6110 restriction fragment length polymorphisms, 2 Mycobacterium africanum strains, 3 Mycobacterium bovis strains (including 2 BCG strains), and 1 Mycobacterium microti strain, a specific PCR fragment was amplified in all cases. This collection included M. tuberculosis strains that lack IS 6110 or mtp40 , two target sequences that have previously been used for the detection of M. tuberculosis . No PCR fragment was amplified when DNA from other organisms was used, giving a sensitivity of 100% and a specificity of 100% in the confidence limit of this study. The numbers of MIRUs were found to vary among strains, resulting in six different groups of strains on the basis of the size of the amplified PCR fragment. However, the vast majority of the strains (approximately 90%) fell within the same group, containing two 77-bp MIRUs followed by one 53-bp MIRU.
ABSTRACT Sixty-eight ancestral Mycobacterium tuberculosis isolates were previously identified by using the tuberculosis-specific deletion 1 (TbD1) PCR and mycobacterial interspersed-repetitive-unit-variable-number tandem repeat (MIRU-VNTR) typing (Y. J. Sun, R. Bellamy, A. S. G. Lee, S. T. Ng, S. Ravindran, S.-Y. Wong, C. Locht, P. Supply, and N. I. Paton, J. Clin. Microbiol. 42: 1986-1993, 2004). These TbD1 + ancestral isolates were further characterized and typed in this study by IS 6110 restriction fragment length polymorphism (RFLP) typing, VNTR typing using exact tandem repeats (VNTR-ETR), and spoligotyping of the direct-repeat region. To our knowledge, this is the first characterization of this genogroup by multiple genetic markers based on a fairly large sample size. In this genogroup, all spoligotypes were characterized by the absence of spacers 29 to 32 and 34. In addition, VNTR-ETR typing could add further resolution to the clustered isolates identified by MIRU-VNTR, and the combination of MIRU-VNTR and VNTR-ETR, called MIRU-ETR, showed the highest discriminatory power for these strains compared to IS 6110 RFLP typing and spoligotyping alone. However, MIRU-ETR appeared to still cluster some probably epidemiologically unrelated strains, as judged by IS 6110 RFLP divergence. Therefore, a typing strategy based on stepwise combination of MIRU-ETR and IS 6110 RFLP is proposed to achieve maximal discrimination for unrelated TbD1 + strains. This typing strategy may be useful in areas where TbD1 + ancestral strains are prevalent.