Visual acuity was measured behaviorally in various groups of cats by using a two-choice discrimination procedure. Cats in group 1 were rendered strabismic soon after birth by sectioning the tendon of the lateral rectus muscle (unilateral esotropia); at adulthood, their visual acuity (VA) was evaluated, after which the optic chiasm was sectioned and VA reassessed. Cats in group 2 were not only tenotomized but also chiasmatomized neonatally, while cats in group 3 underwent a neonatal section of the optic chiasm only. VA was measured at adulthood in the two latter groups. Group 4 consisted of adult cats whose VA was evaluated before and after an optic chiasm section. Stimuli consisted of square-wave gratings of various spatial frequencies. Results showed that in normal cats, the average threshold values under monocular viewing were identical for each eye (4.76 cycles/degree); however, following optic chiasm section, monocular VA was reduced to 1.23 cycles/degree. VA in early optic chiasm section cats was lower than that of the normal cats but higher than that of late-lesioned animals (2.33 cycles/degree). In strabismic cats, mean VA was 1.25 cycles/degree for the deviated eye and 2.8 cycles/degree for the normal eye. Following the optic chiasm section at adulthood, VA was lower not only for the deviated eye (< 0.17 cycles/degree) but also for the normal eye (1.14 cycles/degree). Similar results were found when both the deviation and chiasmatomy were performed neonatally. The elimination of interocular interactions through chiasm transection failed to improve VA in the strabismic eye.
Hand movements are associated with modulations of neuronal activity across several interconnected cortical areas, including the primary motor cortex (M1) and the dorsal and ventral premotor cortices (PMd and PMv). Local field potentials (LFPs) provide a link between neuronal discharges and synaptic inputs. Our current understanding of how LFPs vary in M1, PMd, and PMv during contralateral and ipsilateral movements is incomplete. To help reveal unique features in the pattern of modulations, we simultaneously recorded LFPs in these areas in two macaque monkeys performing reach and grasp movements with either the right or left hand. The greatest effector-dependent differences were seen in M1, at low (≤13 Hz) and γ frequencies. In premotor areas, differences related to hand use were only present in low frequencies. PMv exhibited the greatest increase in low frequencies during instruction cues and the smallest effector-dependent modulation during movement execution. In PMd, δ oscillations were greater during contralateral reach and grasp, and β activity increased during contralateral grasp. In contrast, β oscillations decreased in M1 and PMv. These results suggest that while M1 primarily exhibits effector-specific LFP activity, premotor areas compute more effector-independent aspects of the task requirements, particularly during movement preparation for PMv and production for PMd. The generation of precise hand movements likely relies on the combination of complementary information contained in the unique pattern of neural modulations contained in each cortical area. Accordingly, integrating LFPs from premotor areas and M1 could enhance the performance and robustness of brain-machine interfaces.
Premotor areas of primates are specialized cortical regions that can contribute to hand movements by modulating the outputs of the primary motor cortex (M1). The goal of the present work was to study how the supplementary motor area (SMA) located within the same hemisphere [i.e., ipsilateral SMA (iSMA)] or the opposite hemisphere [i.e., contralateral (cSMA)] modulate the outputs of M1. We used paired-pulse protocols with intracortical stimulations in sedated capuchin monkeys. A conditioning stimulus in iSMA or cSMA was delivered simultaneously or before a test stimulus in M1 with different interstimulus intervals (ISIs) while electromyographic activity was recorded in hand and forearm muscles. The pattern of modulation from iSMA and cSMA shared some clear similarities. In particular, both areas predominantly induced facilitatory effects on M1 outputs with shorter ISIs and inhibitory effects with longer ISIs. However, the incidence and strength of facilitatory effects were greater for iSMA than cSMA. We then compared the pattern of modulatory effects from SMA to the ones from the dorsal and ventral premotor cortexes (PMd and PMv) collected in the same series of experiments. Among premotor areas, the impact of SMA on M1 outputs was always weaker than the one of either PMd or PMv, and this was regardless of the hemisphere, or the ISI, tested. These results show that SMA exerts a unique set of modulations on M1 outputs, which could support its specific function for the production of hand movements.NEW & NOTEWORTHY We unequivocally isolated stimulation to either the ipsilateral or contralateral supplementary motor area (SMA) using invasive techniques and compared their modulatory effects on the outputs of primary motor cortex (M1). Modulations from both SMAs shared many similarities. However, facilitatory effects evoked from ipsilateral SMA were more common and more powerful. This pattern differs from the ones of other premotor areas, which suggests that each premotor area makes unique contributions to the production of motor outputs.
The primary motor cortex (M1) plays an essential role in the control of hand movements in primates and is part of a complex cortical sensorimotor network involving multiple premotor and parietal areas. In a previous study in squirrel monkeys, we found that the ventral premotor cortex (PMv) projected mainly to 3 regions within the M1 forearm representation [rostro-medial (RM), rostro-lateral (RL), and caudo-lateral (CL)] with very few caudo-medial (CM) projections. These results suggest that projections from premotor areas to M1 are not uniform, but rather segregated into subregions. The goal of the present work was to study how inputs from diverse areas of the ipsilateral cortical network are organized within the M1 hand representation. In Cebus apella, different retrograde neuroanatomical tracers were injected in 4 subregions of the hand area of M1 (RM, RL, CM, and CL). We found a different pattern of input to each subregion of M1. RM receives inputs predominantly from dorsal premotor cortex, RL from PMv, CM from area 5, and CL from area 2. These results support that the M1 hand representation is composed of several subregions, each part of a unique cortical network.
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)—the putative premotor area in rats—in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions.
In rats, forelimb movements are evoked from two cortical regions, the caudal and rostral forelimb areas (CFA and RFA, respectively). These areas are densely interconnected and RFA induces complex and powerful modulations of CFA outputs. CFA and RFA also have interhemispheric connections, and these areas from both hemispheres send projections to common targets along the motor axis, providing multiple potential sites of interactions for movement production. Our objective was to characterize how CFA and RFA in one hemisphere can modulate motor outputs of the opposite hemisphere. To do so, we used paired-pulse protocols with intracortical microstimulation techniques (ICMS), while recording electromyographic (EMG) activity of forelimb muscles in sedated rats. A subthreshold conditioning stimulation was applied in either CFA or RFA in one hemisphere simultaneously or before a suprathreshold test stimulation in either CFA or RFA in the opposite hemisphere. Both CFA and RFA tended to facilitate motor outputs with short (0-2.5 ms) or long (20-35 ms) delays between the conditioning and test stimuli. In contrast, they tended to inhibit motor outputs with intermediate delays, in particular 10 ms. When comparing the two areas, we found that facilitatory effects from RFA were more frequent and powerful than the ones from CFA. In contrast, inhibitory effects from CFA on its homolog were more frequent and powerful than the ones from RFA. Our results demonstrate that interhemispheric modulations from CFA and RFA share some similarities but also have clear differences that could sustain specific functions these cortical areas carry for the generation of forelimb movements.NEW & NOTEWORTHY We show that caudal and rostral forelimb areas (CFA and RFA) have distinct effects on motor outputs from the opposite hemisphere, supporting that they are distinct nodes in the motor network of rats. However, the pattern of interhemispheric modulations from RFA has no clear equivalent among premotor areas in nonhuman primates, suggesting they contribute differently to the generation of ipsilateral hand movements. Understanding these interspecies differences is important given the common use of rodent models in motor control and recovery studies.
Locating target items among multiple distractors can be facilitated as one becomes familiar with the visual scene containing such items. As a step to investigate the neural mechanisms by which information about visual scenes can be acquired and used to locate targets efficiently, we trained monkeys to produce hand movements according to the locations of targets among multiple distractors. Targets and distractors were selected from a set of 9 different stimuli (3 different shapes in 3 different colors). A visual scene was defined by the distribution of these 9 different stimuli in the display. The animal was trained to move a feedback cursor to a series of targets by making hand movements on a touch screen. The first target in each trial was presented by itself, whereas distractors were present for the remaining targets. The identity of the next target item was indicated to the animal by presenting a sample in the current target location. The sample was made 50% larger than the target to distinguish it from other stimuli, and the interval between the acquisition of a given target and the onset of the sample was always 250 ms. In two separate experiments, we tested whether familiarity of visual scene influenced the search performance. Familiarity of a visual scene was manipulated by repeatedly presenting a particular scene chosen randomly each day, and performance was measured by the time taken from sample onset to target acquisition. In the first experiment, the location of each target was randomly determined, and performance improved as the visual scene became familiar to the animal. In the second experiment, target location followed a particular order in a majority of trials, and performance was better for familiar scenes even when the sequence of target locations was learned. As in previous human studies, these results suggest that knowledge of a visual scene can facilitate spatial orienting during search tasks in non-human primates.