Abstract The expression of the transcription factor brachyury ( TBXT ) is normally restricted to embryonic development and its silencing after mesoderm development is epigenetically regulated. In chordoma, a rare tumour of notochordal differentiation, TBXT acts as a putative oncogene, and we hypothesised that its expression could be controlled through epigenetic inhibition. Screening of five chordoma cell lines revealed that only inhibitors of the histone 3 lysine 27 demethylases KDM6A (UTX) and KDM6B (Jmjd3) reduce TBXT expression and lead to cell death, findings validated in primary patient-derived culture systems. Pharmacological inhibition of KDM6 demethylases leads to genome-wide increases in repressive H3K27me3 marks, accompanied by significantly reduced TBXT expression, an effect that is phenocopied by the dual genetic inactivation of KDM6A/B using CRISPR/Cas9. Transcriptional profiles in response to a novel KDM6A/B inhibitor, KDOBA67, revealed downregulation of critical genes and transcription factor networks for chordoma survival pathways, whereas upregulated pathways were dominated by stress, cell cycle and pro-apoptotic response pathways. This study supports previous data showing that the function of TBXT is essential for maintaining notochord cell fate and function and provides further evidence that TBXT is an oncogenic driver in chordoma. Moreover, the data suggest that TBXT can potentially be targeted therapeutically by modulating epigenetic control mechanisms such as H3K27 demethylases.
The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique G34W oncohistone mutation in the H3.3 histone gene. Here we reveal the genomic and methylation patterns underlying the rare clinical phenomena of benign metastases and malignant transformation of GCTB.
Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs), yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP) method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs). Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.
Expression of the transcription factor brachyury (TBXT) is normally restricted to the embryo, and its silencing is epigenetically regulated. TBXT promotes mesenchymal transition in a subset of common carcinomas, and in chordoma, a rare cancer showing notochordal differentiation, TBXT acts as a putative oncogene. We hypothesized that TBXT expression is controlled through epigenetic inhibition to promote chordoma cell death. Screening of five human chordoma cell lines revealed that pharmacologic inhibition of the histone 3 lysine 27 demethylases KDM6A (UTX) and KDM6B (JMJD3) leads to cell death. This effect was phenocopied by dual genetic inactivation of KDM6A/B using CRISPR/Cas9. Inhibition of KDM6A/B with a novel compound KDOBA67 led to a genome-wide increase in repressive H3K27me3 marks with concomitant reduction in active H3K27ac, H3K9ac, and H3K4me3 marks.
CODEX (http://codex.stemcells.cam.ac.uk/) is a user-friendly database for the direct access and interrogation of publicly available next-generation sequencing (NGS) data, specifically aimed at experimental biologists. In an era of multi-centre genomic dataset generation, CODEX provides a single database where these samples are collected, uniformly processed and vetted. The main drive of CODEX is to provide the wider scientific community with instant access to high-quality NGS data, which, irrespective of the publishing laboratory, is directly comparable. CODEX allows users to immediately visualize or download processed datasets, or compare user-generated data against the database's cumulative knowledge-base. CODEX contains four types of NGS experiments: transcription factor chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq), histone modification ChIP-Seq, DNase-Seq and RNA-Seq. These are largely encompassed within two specialized repositories, HAEMCODE and ESCODE, which are focused on haematopoiesis and embryonic stem cell samples, respectively. To date, CODEX contains over 1000 samples, including 221 unique TFs and 93 unique cell types. CODEX therefore provides one of the most complete resources of publicly available NGS data for the direct interrogation of transcriptional programmes that regulate cellular identity and fate in the context of mammalian development, homeostasis and disease.
The expression of p16/CDKN2A, the second most commonly inactivated tumour suppressor gene in cancer, is lost in the majority of chordomas. However, the mechanism(s) leading to its inactivation and contribution to disease progression have only been partially addressed using small patient cohorts. We studied 384 chordoma samples from 320 patients by immunohistochemistry and found that p16 protein was lost in 53% of chordomas and was heterogeneously expressed in these tumours. To determine if CDKN2A copy number loss could explain the absence of p16 protein expression we performed fluorescence in situ hybridisation (FISH) for CDKN2A on consecutive tissue sections. CDKN2A copy number status was altered in 168 of 274 (61%) of samples and copy number loss was the most frequent alteration acquired during clinical disease progression. CDKN2A homozygous deletion was always associated with p16 protein loss but only accounted for 33% of the p16-negative cases. The remaining immunonegative cases were associated with disomy (27%), monosomy (12%), heterozygous loss (20%) and copy number gain (7%) of CDKN2A, supporting the hypothesis that loss of protein expression might be achieved via epigenetic or post-transcriptional regulatory mechanisms. We identified that mRNA levels were comparable in tumours with and without p16 protein expression, but other events including DNA promoter hypermethylation, copy number neutral loss of heterozygosity and expression of candidate microRNAs previously implicated in the regulation of CDKN2A expression were not identified to explain the protein loss. The data argue that p16 loss in chordoma is commonly caused by a post-transcriptional regulatory mechanism that is yet to be defined.