Despite the popularity of games, there has been limited peerreviewed literature published on game-based learning for science. This paper will de- scribe a project that combined an Intelligent Tutoring System (AutoTutor) with a physics game called Physics Playground. As part of this integration we used the Generalized Intelligent Framework for Tutoring (GIFT) to manage commu- nication between the two technologies. We will also discuss the design of a study comparing two versions of the integration. This study is taking place over Spring of 2015 and will be studying the effects of integrating different levels of tutoring into a gamebased learning system.
The privacy protection for face images aims to prevent attackers from accurately identifying target persons through face recognition. Inspired by goal-driven reasoning (reverse reasoning), this paper designs a goal-driven algorithm of local privacy protection for sensitive areas in multiface images (face areas) under the interactive framework of face recognition algorithm, regional growth, and differential privacy. The designed algorithm, named privacy protection for sensitive areas (PPSA), is realized in the following manner: Firstly, the multitask cascaded convolutional network (MTCNN) was adopted to recognize the region and landmark of each face. If the landmark overlaps a subgraph divided from the original image, the subgraph will be taken as the seed for regional growth in the face area, following the growth criterion of the fusion similarity measurement mechanism (FSMM). Different from single-face privacy protection, multiface privacy protection needs to deal with an unknown number of faces. Thus, the allocation of the privacy budget ε directly affects the operation effect of the PPSA algorithm. In our scheme, the total privacy budget ε is divided into two parts: ε_1 and ε_2. The former is evenly allocated to each seed, according to the estimated number of faces ρ contained in the image, while the latter is allocated to the other areas that may consume the privacy budget through dichotomization. Unlike the Laplacian (LAP) algorithm, the noise error of the PPSA algorithm will not change with the image size, for the privacy protection is limited to the face area. The results show that the PPSA algorithm meets the requirements ε-Differential privacy, and image classification is realized by using different image privacy protection algorithms in different human face databases. The verification results show that the accuracy of the PPSA algorithm is improved by at least 16.1%, the recall rate is improved by at least 2.3%, and F1-score is improved by at least 15.2%.
Fingerprint recognition technology has been extensively employed across various sectors of society. The direct publication of fingerprint images leads to the disclosure of sensitive information. According to the fingerprint image identification process, the fingerprint image protection process is actually the fingerprint image feature point location information, quantity information, type information protection. To address this issue, this paper proposes a machine learning and differential privacy-based fingerprint image publish algorithm called DP-RKLAP. The algorithm establishes a protected process to match feature points in fingerprint images and employs a clustering algorithm for initial segmentation of the images (KLAP). Additionally, a multinomial regression algorithm is applied to preprocess the segmented image regions, constructing a regression model that accurately determines fluctuation amplitudes for precise segmentation of protected areas containing matching feature points (RKLAP). Considering the uncertainty in segmentation caused by uncertain feature point locations in fingerprint images, we introduce a dynamic allocation method (DP) for privacy budget allocation. The exponential mechanism leverages the relationship between the number of matching feature points and segmentation regions to dynamically allocate privacy budgets within the Laplace mechanism framework of differential privacy technique, thereby achieving local protection publish for fingerprint images. This reduction in sensitivity effectively mitigates noise errors during the process of privacy protection, thereby achieving a balance between privacy and usability of the fingerprint images. Experimental results confirm that our proposed method successfully achieves privacy protection during the publishing process of fingerprint images, while still maintaining high usability after protected publishing and matching verification using real-world datasets.
Human click behavior prediction is crucial for recommendation scenarios such as online commodity or advertisement recommendation, as it is helpful to improve the quality and user satisfaction of services. In recommender systems, the concept of click-through rate (CTR) is used to estimate the probability that a user will click on a recommended candidate. Many methods have been proposed to predict CTR and achieved good results. However, they usually optimize the parameters through a global objective function such as minimizing logloss or root mean square error (RMSE) for all training samples. Obviously, they intend to capture global knowledge of user click behavior but ignore local information. In this work, we propose a novel approach of retrieval-based factorization machines (RFM) for CTR prediction, which can effectively predict CTR by combining global knowledge which is learned from the FM method with the neighbor-based local information. We also leverage the clustering technique to partition the large training set into multiple small regions for efficient retrieval of neighbors. We evaluate our RFM model on three public datasets. The experimental results show that RFM performs better than other models in metrics of RMSE, area under ROC (AUC), and accuracy. Moreover, it is efficient because of the small number of model parameters.
Face images, as an information carrier, are naturally weak in privacy. If they are collected and analyzed by malicious third parties, personal privacy will leak, and many other unmeasurable losses will occur. Differential privacy protection of face images is mainly being studied under non-interactive frameworks. However, the ε-effect impacts the entire image under these frameworks. Besides, the noise influence is uniform across the protected image, during the realization of the Laplace mechanism. The differential privacy of face images under interactive mechanisms can protect the privacy of different areas to different degrees, but the total error is still constrained by the image size. To solve the problem, this paper proposes a non-global privacy protection method for sensitive areas in face images, known as differential privacy of landmark positioning (DPLP). The proposed algorithm is realized as follows: Firstly, the active shape model (ASM) algorithm was adopted to position the area of each face landmark. If the landmark overlaps a subgraph of the original image, then the subgraph would be taken as a sensitive area. Then, the sensitive area was treated as the seed for regional growth, following the fusion similarity measurement mechanism (FSMM). In our method, the privacy budget is only allocated to the seed; whether any other insensitive area would be protected depends on whether the area exists in a growing region. In addition, when a subgraph meets the criterion for merging with multiple seeds, the most reasonable seed to be merged would be selected by the exponential mechanism. Experimental results show that the DPLP algorithm satisfies ε-differential privacy, its total error does not change with image size, and the noisy image remains highly available.
Face images, as an information carrier, are rich in sensitive information. Direct publication of these images would cause privacy leak, due to their natural weak privacy. Most of the existing privacy protection methods for face images adopt data publication under a non-interactive framework. However, the E-effect under this framework covers the entire image, such that the noise influence is uniform across the image. To solve the problem, this paper proposes region growing publication (RGP), an algorithm for the interactive publication of face images under differential privacy. This innovative algorithm combines the region growing technique with differential privacy technique. The privacy budget E is dynamically allocated, and the Laplace noise is added, according to the similarity between adjacent sub-images. To measure this similarity more effectively, the fusion similarity measurement mechanism (FSMM) was designed, which better adapts to the intrinsic attributes of images. Different from traditional region growing rules, the FSMM fully considers various attributes of images, including brightness, contrast, structure, color, texture, and spatial distribution. To further enhance algorithm feasibility, RGP was extended to atypical region growing publication (ARGP). While RGP limits the region growing direction between adjacent sub-images, ARGP searches for the qualified sub-images across the image, with the aid of the exponential mechanism, thereby expanding the region merging scope of the seed point. The results show that our algorithm can satisfy E-differential privacy, and the denoised image still have a high availability.