The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis.
The mRNA encoding vasopressin has recently been documented within the magnocellular hypothalamo-neurohypophyseal projections of the rat such as the median eminence (ME) and the posterior pituitary (PP), suggesting the possibility of its axonal transport. To address the origin of this mRNA and to investigate the functional significance of this unexpected axonal transport of mRNA, we have examined its subcellular localization within both magnocellular perikarya and their axonal projections. For this purpose, we have used nonradioactive in situ hybridization techniques in order to localize the vasopressin mRNA with precision at the ultrastructural level in magnocellular perikarya, dendrites, and axons from control, salt-loaded, and lactating rats. This approach permitted us to demonstrate directly the axonal localization of vasopressin mRNA. Moreover, we were able to obtain novel information concerning vasopressin mRNA compartmentation within both perikarya and axons. At both light and electron microscopic levels, we observed vasopressin mRNA-containing cells in the hypothalamic magnocellular cell body groups, but not in the ME or in the PP. When vasopressin mRNA was detected in medium-size dendrites, it was always associated with the rough endoplasmic reticulum (RER). Within the labeled magnocellular perikarya, the abundant vasopressin mRNA was mainly associated with discrete areas of the RER. However, vasopressin mRNA was never detected in the Golgi apparatus or in association with neurosecretory granules, in perikarya or axons. These data suggest that vasopressin mRNA translation is restricted to certain segments within the RER, and that axonal transport of vasopressin mRNA does not involve the classical neurosecretory pathway, via the Golgi apparatus and the neurosecretory granules, as has been proposed. Within the magnocellular neuron axons, vasopressin mRNA could be detected only in a subset of axonal swellings, all of which were confined to the internal layer of the ME and the PP. The mRNA-containing swellings were numerous in 7 d salt-loaded animals, less abundant in lactating animals, and almost undetectable in control animals. In all groups of animals, no vasopressin mRNA was detectable in any other region of the magnocellular neuron axons, including undilated axonal segments or varicose swellings. These results strongly suggest that, under physiological activation such as chronic salt loading, axonal vasopressin mRNA is increased and becomes aggregated in a selected subset of swellings of the ME and the PP. Furthermore, these data indicate that along the magnocellular neuron axons, the swellings may differ in their biochemical and functional features. Further analysis focused on the mRNA-accumulating swellings may illuminate the function of RNA within the axonal compartment.
Local protein synthesis in dendrites contributes to the synaptic modifications underlying learning and memory. The mRNA encoding the α subunit of the calcium/calmodulin dependent Kinase II (CaMKIIα) is dendritically localized and locally translated. A role for CaMKIIα local translation in hippocampus-dependent memory has been demonstrated in mice with disrupted CaMKIIα dendritic translation, through deletion of CaMKIIα 3′UTR. We studied the dendritic localization and local translation of CaMKIIα in the mouse olfactory bulb (OB), the first relay of the olfactory pathway, which exhibits a high level of plasticity in response to olfactory experience. CaMKIIα is expressed by granule cells (GCs) of the OB. Through in situ hybridization and synaptosome preparation, we show that CaMKIIα mRNA is transported in GC dendrites, synaptically localized and might be locally translated at GC synapses. Increases in the synaptic localization of CaMKIIα mRNA and protein in response to brief exposure to new odors demonstrate that they are activity-dependent processes. The activity-induced dendritic transport of CaMKIIα mRNA can be inhibited by an NMDA receptor antagonist and mimicked by an NMDA receptor agonist. Finally, in mice devoid of CaMKIIα 3′UTR, the dendritic localization of CaMKIIα mRNA is disrupted in the OB and olfactory associative learning is severely impaired. Our studies thus reveal a new functional modality for CaMKIIα local translation, as an essential determinant of olfactory plasticity.
The Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability, and the first monogenic cause of Autism Spectrum Disorder. FXS is caused by the absence of the RNA-binding protein FMRP (Fragile X Messenger Ribonucleoprotein).Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains mostly unexplored. We studied the consequences of FMRP absence on migration, by live-imaging neurons of the postnatal Rostral Migratory Stream (RMS).In Fmr1-null RMS, neurons exhibit a slowed-down migration and an impaired trajectory, associated with defects of their centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Finally, the FMRP mRNA target involved in these defects is MAP1B (Microtubule-Associated Protein 1B), since its knockdown rescues most migratory defects.Our results thus unveil a new neurodevelopmental role of FMRP, as a crucial actor of neuronal migration linked to MAP1B, potentially important for the understanding of FXS pathophysiology.
In this paper, we describe a protocol allowing measurement of the mechanical tension of individual axons grown ex vivo from neural tissue explants. This protocol was developed with primary cultures of olfactory epithelium explants from embryonic (E13.5) mice. It includes a detailed description of explant dissection and culture, as well as the main steps of the procedure for axon tension measurement using the previously established Biomembrane Force Probe.