We used dedicated SRG/eROSITA X-ray, ASKAP/EMU radio, and DECam optical observations of a 15 sq.deg region around the interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. We trace the irregular morphology of warm-hot gas of the main clusters from their centers out to well beyond their characteristic radii, $r_{200}$. Between the two main cluster systems, we observe an emission bridge; thanks to eROSITA's unique soft response and large field of view, we discover tantalizing hints for warm gas. Several matter clumps physically surrounding the system are detected. For the "Northern Clump," we provide evidence that it is falling towards A3391 from the hot gas morphology and radio lobe structure of its central AGN. Many of the extended sources in the field detected by eROSITA are known clusters or new clusters in the background, including a known SZ cluster at redshift z=1. We discover an emission filament north of the virial radius, $r_{100}$, of A3391 connecting to the Northern Clump and extending south of A3395 towards another galaxy cluster. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA observation. The DECam galaxy density map shows galaxy overdensities in the same regions. The new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution compared to the Magneticum simulation. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure.
The Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument is a millimeter-wave cryogenic receiver designed to observe galaxy clusters via the Sunyaev-Zel'dovich effect from the 12 m APEX telescope on the Atacama plateau in Chile. The receiver contains a focal plane of 280 superconducting transition-edge sensor (TES) bolometers instrumented with a frequency-domain multiplexed readout system. The bolometers are cooled to 280 mK via a three-stage helium sorption refrigerator and a mechanical pulse-tube cooler. Three warm mirrors, two 4 K lenses, and a horn array couple the TES bolometers to the telescope. APEX-SZ observes in a single frequency band at 150 GHz with 1' angular resolution and a 22' field-of-view, all well suited for cluster mapping. The APEX-SZ receiver has played a key role in the introduction of several new technologies including TES bolometers, the frequency-domain multiplexed readout, and the use of a pulse-tube cooler with bolometers. As a result of these new technologies, the instrument has a higher instantaneous sensitivity and covers a larger field-of-view than earlier generations of Sunyaev-Zel'dovich instruments. The TES bolometers have a median sensitivity of 890 uKcmb-sqrt(s) (NEy of 3.5e-4 sqrt(s)). We have also demonstrated upgraded detectors with improved sensitivity of 530 uKcmb-sqrt(s) (NEy of 2.2e-4 sqrt(s)). Since its commissioning in April 2007, APEX-SZ has been used to map 48 clusters. We describe the design of the receiver and its performance when installed on the APEX telescope.
Aims. We examine the X-ray, optical, and radio properties of the member clusters of a new supercluster discovered during the SRG/eROSITA Performance Verification phase. Methods. We analyzed the 140 deg 2 eROSITA Final Equatorial Depth Survey (eFEDS) field observed during the Performance Verification phase to a nominal depth of about 2.3 ks. In this field, we detect a previously unknown supercluster consisting of a chain of eight galaxy clusters at z ~ 0.36. The redshifts of these members were determined through Hyper Suprime-Cam photometric measurements. We examined the X-ray morphological and dynamical properties, gas, and total mass out to R 500 of the members and compare these with the same properties of the general population of clusters detected in the eFEDS field. We further investigated the gas in the bridge region between the cluster members for a potential WHIM detection. We also used radio follow-up observations with LOFAR and uGMRT to search for diffuse emission and constrain the dynamic state of the system. Results. We do not find significant differences between the morphological parameters and properties of the intra-cluster medium of the clusters embedded in this large-scale filament and those of the eFEDS clusters. We also provide upper limits on the electron number density and mass of the warm-hot intergalactic medium as provided by the eROSITA data. These limits are consistent with previously reported values for the detections in the vicinity of clusters of galaxies. In LOFAR and uGMRT follow-up observations of the northern part of this supercluster, we find two new radio relics and a radio halo that are the result of major merger activity in the system. Conclusions. These early results show the potential of eROSITA to probe large-scale structures such as superclusters and the properties of their members. Our forecasts show that we will be able to detect about 450 superclusters, with approximately 3000 member clusters located in the eROSITA_DE region at the final eROSITA all-sky survey depth, enabling statistical studies of the properties of superclusters and their constituents embedded in the cosmic web.
Abstract This Science White Paper, prepared in response to the ESA Voyage 2050 call for long-term mission planning, aims to describe the various science possibilities that can be realized with an L-class space observatory that is dedicated to the study of the interactions of cosmic microwave background (CMB) photons with the cosmic web. Our aim is specifically to use the CMB as a backlight – and survey the gas, total mass, and stellar content of the entire observable Universe by means of analyzing the spatial and spectral distortions imprinted on it. These distortions result from two major processes that impact on CMB photons: scattering by free electrons and atoms (Sunyaev-Zeldovich effect in diverse forms, Rayleigh scattering, resonant scattering) and deflection by gravitational potential (lensing effect). Even though the list of topics collected in this White Paper is not exhaustive, it helps to illustrate the exceptional diversity of major scientific questions that can be addressed by a space mission that will reach an angular resolution of 1.5 arcmin (goal 1 arcmin), have an average sensitivity better than 1 μ K-arcmin, and span the microwave frequency range from roughly 50 GHz to 1 THz. The current paper also highlights the synergy of our Backlight mission concept with several upcoming and proposed ground-based CMB experiments.
Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev-Zel'dovich (SZ) effect instruments. Additionally, non-thermal electrons (re-)energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma) and the farthest (El Gordo) clusters with known radio relics.
Abstract This paper discusses the science case for a sensitive spectro-polarimetric survey of the microwave sky. Such a survey would provide a tomographic and dynamic census of the three-dimensional distribution of hot gas, velocity flows, early metals, dust, and mass distribution in the entire Hubble volume, exploit CMB temperature and polarisation anisotropies down to fundamental limits, and track energy injection and absorption into the radiation background across cosmic times by measuring spectral distortions of the CMB blackbody emission. In addition to its exceptional capability for cosmology and fundamental physics, such a survey would provide an unprecedented view of microwave emissions at sub-arcminute to few-arcminute angular resolution in hundreds of frequency channels, a data set that would be of immense legacy value for many branches of astrophysics. We propose that this survey be carried out with a large space mission featuring a broad-band polarised imager and a moderate resolution spectro-imager at the focus of a 3.5 m aperture telescope actively cooled to about 8K, complemented with absolutely-calibrated Fourier Transform Spectrometer modules observing at degree-scale angular resolution in the 10–2000 GHz frequency range. We propose two observing modes: a survey mode to map the entire sky as well as a few selected wide fields, and an observatory mode for deeper observations of regions of specific interest.
Giant radio haloes in galaxy clusters are the primary evidence for the existence of relativistic particles (cosmic rays) and magnetic fields over Mpc scales. Observational tests for the different theoretical models explaining their powering mechanism have so far been obtained through X-ray selection of clusters, e.g. by comparing cluster X-ray luminosities with radio halo power. Here we present the first global scaling relations between radio halo power and integrated Sunyaev-Zel'dovich (SZ) effect measurements, using the Planck all-sky cluster catalog and published radio data. The correlation agrees well with previous scaling measurements based on X-ray data, and offers a more direct probe into the mass dependence inside radio haloes. However, we find no strong indication for a bi-modal cluster population split between radio halo and radio quiet objects. We discuss the possible causes for this apparent lack of bi-modality, and compare the observed slope of the radio-SZ correlation with competing theoretical models of radio halo origin.
The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood–brain barrier permeability. However, the role of the LC–NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC–NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p < 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p < 0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p < 0.01). These CBF responses were almost abolished (−70%, p < 0.001) by cortical NA denervation with DSP-4 [ N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine hydrochloride] and were significantly reduced by α- and β-adrenoceptor antagonists (−40%, p < 0.001 and −30%, p < 0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABA A receptor antagonists potently reduced the LC-induced hyperemic response (−56%, p < 0.001 or −47%, p < 0.05). Moreover, inhibition of astroglial metabolism (−35%, p < 0.01), vasoactive epoxyeicosatrienoic acids (EETs; −60%, p < 0.001) synthesis, large-conductance, calcium-operated (BK, −52%, p < 0.05), and inward-rectifier (Kir, −40%, p < 0.05) K + channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K + fluxes and EET signaling mediate a large part of the hemodynamic response.
A white paper to describe the importance of submillimeter observations for accurate spectral modeling of the SZ effect and how this can transform astronomical research within the coming decade. We highlight some of the main science areas to be impacted by SZ spectral studies and outline the instrumental requirements.