Germinal centres (GCs) are T follicular helper cell (Tfh)-dependent structures that form in response to vaccination, producing long-lived antibody secreting plasma cells and memory B cells that protect against subsequent infection. With advancing age the GC and Tfh cell response declines, resulting in impaired humoral immunity. We sought to discover what underpins the poor Tfh cell response in ageing and whether it is possible to correct it. Here, we demonstrate that older people and aged mice have impaired Tfh cell differentiation upon vaccination. This deficit is preceded by poor activation of conventional dendritic cells type 2 (cDC2) due to reduced type 1 interferon signalling. Importantly, the Tfh and cDC2 cell response can be boosted in aged mice by treatment with a TLR7 agonist. This demonstrates that age-associated defects in the cDC2 and Tfh cell response are not irreversible and can be enhanced to improve vaccine responses in older individuals.
Affinity maturation, the progressive increase in serum Ab affinity after vaccination, is an essential process that contributes to an effective humoral response against vaccines and infections. Germinal centers are key for affinity maturation, because they are where B cells undergo somatic hypermutation of their Ig genes in the dark zone before going through positive selection in the light zone via interactions with T follicular helper cells and follicular dendritic cells. In aged mice, affinity maturation has been shown to be impaired after immunization, but whether B cell-intrinsic factors contribute to this defect remains unclear. In this study, we show that B cells from aged BCR transgenic mice are able to become germinal center B cells, which are capable of receiving positive selection signals to a similar extent as B cells from young adult mice. Consistent with this, aging also does not impact the ability of B cells to undergo somatic hypermutation and acquire affinity-enhancing mutations. By contrast, transfer of B cells from young adult BCR mice into aged recipients resulted in the impaired acquisition of affinity-enhancing mutations, demonstrating that the aged microenvironment causes altered affinity maturation.
Abstract Affinity maturation, the progressive increase in serum antibody affinity after vaccination, is an essential process that contributes to an effective humoral response against vaccines and infections. Germinal centres (GCs) are key for affinity maturation, as they are where B cells undergo somatic hypermutation of their immunoglobulin genes in the dark zone, before going through positive selection in the light zone via interactions with T follicular helper cells and follicular dendritic cells. In aged mice, affinity maturation has been shown to be impaired, but whether B cell-intrinsic factors contribute to this defect remains unclear. In this study, we show that B cells from aged B cell receptor transgenic mice are able to become GC B cells, which are capable of receiving positive selection signals to a similar extent as B cells from young adult mice. Consistent with this, ageing also does not impact the ability of B cells to undergo somatic hypermutation and acquire affinity-enhancing mutations. Together, this shows that there are no B cell-intrinsic defects in affinity maturation with age when the B cell receptor repertoire is constant.
BackgroundThe spread of SARS-CoV-2 has caused a worldwide pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection and may enable the relaxation of social-distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection; therefore, it is desirable that any new vaccine candidates elicit a robust immune response in older adults.MethodsHere, we use in-depth immunophenotyping to characterize the innate and adaptive immune response induced upon intramuscular administration of the adenoviral vectored ChAdOx1 nCoV-19 (AZD-1222) COVID-19 vaccine candidate in mice.FindingsA single vaccination generates spike-specific Th1 cells, Th1-like Foxp3+ regulatory T cells, polyfunctional spike-specific CD8+ T cells. and granzyme-B-producing CD8 effectors. Spike-specific IgG and IgM are generated from both the early extrafollicular antibody response and the T follicular helper cell-supported germinal center reaction, which is associated with the production of virus-neutralizing antibodies. A single dose of this vaccine generated a similar type of immune response in aged mice but of a reduced magnitude than in younger mice. We report that a second dose enhances the immune response to this vaccine in aged mice.ConclusionsThis study shows that ChAdOx1 nCoV-19 induces both cellular and humoral immunity in adult and aged mice and suggests a prime-boost strategy is a rational approach to enhance immunogenicity in older persons.FundingThis study was supported by BBSRC, Lister institute of Preventative Medicine, EPSRC VaxHub, and Innovate UK.
The germinal centre (GC) is an organized microstructure that forms in lymphoid tissues that produces long-lived antibody secreting plasma cells and memory B cells, which can provide protection against reinfection. Within the GC, B cells undergo somatic mutation of the genes encoding their B cell receptors, which following successful selection can lead to the emergence of B cell clones that bind antigen with high affinity. However, this mutation process can also be dangerous, as it can create autoreactive clones that can cause autoimmunity. Because of this, regulation of GC reactions is critical to ensure high affinity antibody production and to enforce self-tolerance by avoiding emergence of autoreactive B cell clones. A productive GC response requires the collaboration of multiple cell types: The stromal cell network which orchestrates GC cell dynamics by controlling antigen deliver and cell trafficking. T follicular helper (Tfh) cells which are unique in providing specialized help to GC B cells through cognate T-B cell interactions, and Foxp3+ T follicular regulatory (Tfr) cells are key mediators of GC regulation. However, regulation of GC responses is not a simple outcome of Tfh/Tfr balance, but also involves the contribution of other cell types to modulate the GC microenvironment and to avoid autoimmunity. Thus, the regulation of the GC is complex, and occurs at multiple levels. In this review we outline recent developments in the biology of cell subsets involved in the regulation of GC reactions, in both secondary lymphoid tissues and tertiary lymphoid structures. We discuss the mechanisms which enable the generation of potent protective humoral immunity whilst GC-derived autoimmunity is avoided.
Abstract The spread of SARS-CoV-2 has caused a global pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection, and may enable the relaxation of social distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection, therefore it is desirable that any new vaccine candidates should elicit a robust immune response in older adults. Here, we test the immunogenicity of the adenoviral vectored vaccine ChAdOx1 nCoV-19 (AZD-1222) in aged mice. We find that a single dose of this vaccine induces cellular and humoral immunity in aged mice, but at a reduced magnitude than in younger adult mice. Furthermore, we report that a second dose enhances the immune response to this vaccine in aged mice, indicating that a primeboost strategy may be a rational approach to enhance immunogenicity in older persons.
The failure to generate enduring humoral immunity after vaccination is a hallmark of advancing age. This can be attributed to a reduction in the germinal center (GC) response, which generates long-lived antibody-secreting cells that protect against (re)infection. Despite intensive investigation, the primary cellular defect underlying impaired GCs in aging has not been identified. Here, we used heterochronic parabiosis to demonstrate that GC formation was dictated by the age of the lymph node (LN) microenvironment rather than the age of the immune cells. Lymphoid stromal cells are a key determinant of the LN microenvironment and are also an essential component underpinning GC structure and function. Using mouse models, we demonstrated that mucosal adressin cell adhesion molecule-1 (MAdCAM-1)-expressing lymphoid stromal cells were among the first cells to respond to NP-KLH + Alum immunization, proliferating and up-regulating cell surface proteins such as podoplanin and cell adhesion molecules. This response was essentially abrogated in aged mice. By targeting TLR4 using adjuvants, we improved the MAdCAM-1
Abstract Vaccination generates long-lived antibody-mediated immunity against (re-)infection. This humoral immunity is derived from memory B cells and long-lived antibody-secreting plasma cells via the germinal centre (GC) response. The magnitude and quality of the GC response declines with age, resulting in poor vaccine-induced immunity in older individuals, but the causal factor/s of this age-related decline are unknown. A functional GC requires the co-ordination of multiple cell types across time and space, in particular across its two functionally distinct compartments: the light and dark zones. We identified that the spatial organisation of the GC is altered in ageing, with CXCR4-mediated mislocalisation of T follicular helper (Tfh) cells in the dark zone and a compressed network of follicular dendritic cells (FDCs) in the light zone. By modulating the positioning of Tfh cells in vivo, we found that Tfh cell polarisation is critical for the quality of the antibody response, and, surprisingly, for the expansion of the FDC network upon immunisation. The smaller GC responses and defective FDC expansion in ageing were corrected by provision of Tfh cells that co-localise with FDCs via CXCR5:CXCL13-mediated interaction. This demonstrates that the age-dependent defects in the GC response are reversible and shows that Tfh cells have a dual role in B cell help and facilitating stromal cell responses to vaccines.